Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 59588 by aliesam last updated on 12/May/19

find x,y in R  (x+yi)^3 =((1+(√(15)) i)/((√5) − (√3) i))

findx,yinR(x+yi)3=1+15i53i

Commented by maxmathsup by imad last updated on 12/May/19

⇒x+iy =^3 (√((1+(√(15))i)/((√5)−(√3)i)))   let solve Z^3  =((1+(√(15))i)/((√5)−(√3)i))  we have   ∣1+(√(15))i∣ =(√(1+15))=4   and   ∣(√5)−(√3)i∣ =(√(5 +3))=2(√(2 ))⇒∣((1+(√(15))i)/((√5)−(√3)i))∣=(4/(2(√2))) =(√(2 ))  1+(√(15))i =4{(1/4)+((√(15))/4)i} =r e^(iθ)  ⇒r=4 and cosθ=(1/4) and sinθ =((√(15))/4) ⇒  tanθ =(√(15)) ⇒θ =arctan((√(15))) also (√5)−(√3)i =2(√2){((√5)/(2(√2))) −((√3)/(2(√2)))i}=r^′  e^(iθ′)  ⇒  r^′  =2(√2) and  θ^′  =arctan(((−(√3))/(√5))) ⇒arg(((1+(√(15))i)/((√5)−(√3)i)))≡ arctan((√(15))) +arctan(((√3)/(√5)))[2π] ⇒   ⇒((1+(√(15))i)/((√5)−(√3)i)) =(√2) e^(i(arctan((√(15)))+arctan(((√3)/(√5)))))  =Z^3  ⇒  Z =^6 (√2)e^((1/3)(arctan((√(15)))+arctan(((√3)/(√5))))i)   =^6 (√2){cos((1/3)(arctan((√(15)))+arctan(((√3)/(√5)))))+i  sin((1/3)(arctan((√(15)))+arctan(((√3)/(√5)))) ⇒  x =^6 (√2)cos((1/3)(arctan((√(15)))+arctan(((√3)/(√5))))) and  y =^6 (√2)sin((1/3)(arctan((√(15))) +arctan(((√3)/(√5))))) .

x+iy=31+15i53iletsolveZ3=1+15i53iwehave1+15i=1+15=4and53i=5+3=22⇒∣1+15i53i∣=422=21+15i=4{14+154i}=reiθr=4andcosθ=14andsinθ=154tanθ=15θ=arctan(15)also53i=22{522322i}=reiθr=22andθ=arctan(35)arg(1+15i53i)arctan(15)+arctan(35)[2π]1+15i53i=2ei(arctan(15)+arctan(35))=Z3Z=62e13(arctan(15)+arctan(35))i=62{cos(13(arctan(15)+arctan(35)))+isin(13(arctan(15)+arctan(35))x=62cos(13(arctan(15)+arctan(35)))andy=62sin(13(arctan(15)+arctan(35))).

Answered by tanmay last updated on 12/May/19

(((1+(√(15)) i)((√5) +(√3) i))/8)  (((2+2(√(15)) i)((√5) +(√3) i))/(16))  (((5−3+2(√(15)) i)((√5) +(√3) i))/(16))  ((((√5) +(√3) i)^2 ((√5) +(√3) i))/(16))  ((((√5) +(√3) i)^3 )/((2^(4/3) )^3 ))  so x=((√5)/2^(4/3) )   and y=((√3)/2^(4/3) )

(1+15i)(5+3i)8(2+215i)(5+3i)16(53+215i)(5+3i)16(5+3i)2(5+3i)16(5+3i)3(243)3sox=5243andy=3243

Commented by MJS last updated on 12/May/19

your solution is z_1 =(((√5)(4)^(1/3) )/4)+(((√3)(4)^(1/3) )/4)i but there are  2 more: z_2 =z_1 (−(1/2)−((√3)/2)i)=((4)^(1/3) /8)(3−(√5))−(((√3)(4)^(1/3) )/8)(1+(√5))i  and z_3 =z_1 (−(1/2)+((√3)/2)i)=−((4)^(1/3) /8)(3+(√5))−(((√3)(4)^(1/3) )/8)(1−(√5))i

yoursolutionisz1=5434+3434ibutthereare2more:z2=z1(1232i)=438(35)3438(1+5)iandz3=z1(12+32i)=438(3+5)3438(15)i

Commented by tanmay last updated on 12/May/19

thank yousir...

thankyousir...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com