Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59631 by Mr X pcx last updated on 12/May/19

1) calculate ∫_0 ^(2π)    (dx/(acosx +bsinx))  with a , b reals  2)find also ∫_0 ^(2π)   ((cosx dx)/((acosx +bsinx)^2 ))  and  ∫_0 ^(2π)   ((sinx dx)/((acosx +bsinx)^2 ))  3) find the value of ∫_0 ^(2π)    (dx/(2cosx +(√3)sinx))

1)calculate02πdxacosx+bsinxwitha,breals2)findalso02πcosxdx(acosx+bsinx)2and02πsinxdx(acosx+bsinx)23)findthevalueof02πdx2cosx+3sinx

Commented by Mr X pcx last updated on 12/May/19

4) find the value of ∫_0 ^(2π)    ((cosx dx)/((3cosx +(√3)sinx)^2 ))

4)findthevalueof02πcosxdx(3cosx+3sinx)2

Commented by maxmathsup by imad last updated on 15/May/19

we have I =∫_0 ^π    (dx/(acosx +bsinx)) +∫_π ^(2π)   (dx/(acosx +bsinx)) =H +K  H =_(tan((x/2))=t)       ∫_0 ^∞      (1/(a((1−t^2 )/(1+t^2 )) +b((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) = ∫_0 ^∞   ((2dt)/(a−at^2  +2bt))  =∫_0 ^∞   ((−2dt)/(at^2  −2bt −a))   roots of  at^2 −2bt −a =0  Δ^′  =b^2  +a^2 >0   for a ≠0  ⇒t_1 =((b+(√(a^2  +b^2 )))/a)  t_2 =((b−(√(a^2  +b^2 )))/a) ⇒H =∫_0 ^∞   ((−2)/(a(t−t_1 )(t−t_2 ))) dt =((−2)/(a(t_1 −t_2 )))∫_0 ^∞  ((1/(t−t_1 )) −(1/(t−t_2 )))dt  =((−2)/((2a(√(a^2  +b^2 )))/a)) [ln∣((t−t_1 )/(t−t_2 ))∣]_0 ^(+∞)  =((−1)/(√(a^2  +b^2 )))(−ln∣(t_1 /t_2 )∣) =(1/(√(a^2  +b^2 ))) ln∣((b+(√(a^2 +b^2 )))/(b−(√(a^2  +b^2 ))))∣  ⇒H =(1/(√(a^2  +b^2 )))ln((((√(a^2  +b^2 )) +b)/((√(a^2  +b^2 )) −b)))  K =_(x =t +π)    ∫_0 ^π     (dt/(−a cost −bsint)) =−(1/(√(a^2  +b^2 ))) ln((((√(a^2  +b^2 )) +b)/((√(a^2  +b^2 ))−b))) ⇒  I =0

wehaveI=0πdxacosx+bsinx+π2πdxacosx+bsinx=H+KH=tan(x2)=t01a1t21+t2+b2t1+t22dt1+t2=02dtaat2+2bt=02dtat22btarootsofat22bta=0Δ=b2+a2>0fora0t1=b+a2+b2at2=ba2+b2aH=02a(tt1)(tt2)dt=2a(t1t2)0(1tt11tt2)dt=22aa2+b2a[lntt1tt2]0+=1a2+b2(lnt1t2)=1a2+b2lnb+a2+b2ba2+b2H=1a2+b2ln(a2+b2+ba2+b2b)K=x=t+π0πdtacostbsint=1a2+b2ln(a2+b2+ba2+b2b)I=0

Commented by maxmathsup by imad last updated on 15/May/19

2) let f(a) =∫_0 ^(2π)    (dx/(acosx +bsinx)) ⇒f^′ (a) =− ∫_0 ^(2π)   ((cosx)/((acosx +bsinx)^2 ))dx  but f(a)=0 ⇒f^′ (a)=0 ⇒∫_0 ^(2π)   ((cosx)/((acosx +bsinx)^2 ))dx =0 also we have  ∫_0 ^(2π)   ((sinx)/((acosx +bsinx)^2 ))dx=0  3)∫_0 ^(2π)    (dx/(2cosx +(√3)sinx)) =0 .

2)letf(a)=02πdxacosx+bsinxf(a)=02πcosx(acosx+bsinx)2dxbutf(a)=0f(a)=002πcosx(acosx+bsinx)2dx=0alsowehave02πsinx(acosx+bsinx)2dx=03)02πdx2cosx+3sinx=0.

Answered by tanmay last updated on 12/May/19

∫(dx/(acosx+bsinx))  ∫(dx/(rsinαcosx+rcosαsinx))  (1/r)∫(dx/(sin(α+x)))  (1/r)∫cosec(x+α)dx  (1/r)×lntan(((x+α)/2))+c  (1/((√(a^2 +b^2 )) ))lntan(((x+tan^(−1) ((a/b)))/2))+c  now proceed

dxacosx+bsinxdxrsinαcosx+rcosαsinx1rdxsin(α+x)1rcosec(x+α)dx1r×lntan(x+α2)+c1a2+b2lntan(x+tan1(ab)2)+cnowproceed

Answered by tanmay last updated on 13/May/19

2)∫((cosx)/((acosx+bsinx)^2 ))  cosx=A(acosx+bsinx)+B×(d/dx)(acosx+bsinx)  cosx=A(acosx+bsinx)+B×(−asinx+bcosx)  cosx=(Aa+bB)cosx+(Ab−Ba)sinx  Ab−Ba=0  (A/a)=(B/b)=k →A=ak   and B=bk  Aa+Bb=1  a^2 k+b^2 k=1  k=(1/(a^2 +b^2 ))  so A=(a/(a^2 +b^2 )) and B=(b/(a^2 +b^2 ))  now  ∫((cosxdx)/((acosx+bsinx)^2 ))  ∫[((A(acosx+bsinx)+B×(d/dx)(((acosx+bsinx))/))/((acosx+bsinx)^2 ))]dx  ∫(A/((acosx+bsinx)))dx+B∫((d(acosx+bsinx))/((acosx+bsinx)^2 ))  =(a/(a^2 +b^2 ))×(1/(√(a^2 +b^2 )))lntan(((x+tan^(−1) ((a/b)))/2))+(b/(a^2 +b^2 ))×((−1)/((acosx+bsinx)))+c  now pls put the upper and lower limit  for ∫((sinxdx)/((acosx+bsinx)^2 ))→same method...

2)cosx(acosx+bsinx)2cosx=A(acosx+bsinx)+B×ddx(acosx+bsinx)cosx=A(acosx+bsinx)+B×(asinx+bcosx)cosx=(Aa+bB)cosx+(AbBa)sinxAbBa=0Aa=Bb=kA=akandB=bkAa+Bb=1a2k+b2k=1k=1a2+b2soA=aa2+b2andB=ba2+b2nowcosxdx(acosx+bsinx)2[A(acosx+bsinx)+B×ddx(acosx+bsinx)(acosx+bsinx)2]dxA(acosx+bsinx)dx+Bd(acosx+bsinx)(acosx+bsinx)2=aa2+b2×1a2+b2lntan(x+tan1(ab)2)+ba2+b2×1(acosx+bsinx)+cnowplsputtheupperandlowerlimitforsinxdx(acosx+bsinx)2samemethod...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com