All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 59679 by Forkum Michael Choungong last updated on 13/May/19
Evaluate∫30(x2+3xx3)
Answered by Kunal12588 last updated on 13/May/19
∫30(x2+3xx3)dx=∫30(x2x3+3xx3)dx=∫031xdx+3∫031x2dx=[ln(x)]03+3[x−2+1−2+1]03=ln(3)−ln(0)−3(3−1−0−1)so∫13(x2+3xx3)dxisundefined
Answered by meme last updated on 13/May/19
∫03x+3x2=∫031x+∫031x2=[ln(x)]03−3[1x]03impossible(ln0)
Answered by Joel122 last updated on 14/May/19
Letf(x)=x2+3xx3f(x)isundefinedatx=0,soit′sanimproperintegralI=∫30x2+3xx3dx=lima→0−[∫3ax2+3xx3dx][∫3ax2+3xx3dx=∫3a1x+3x2dx=[lnx−3x]a3=ln(3a)+3a−1]I=lima→0−[ln(3a)+3a−1]=∞∴Theintegralisdivergent
Terms of Service
Privacy Policy
Contact: info@tinkutara.com