Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59732 by maxmathsup by imad last updated on 14/May/19

find I_n =∫  (dx/(sin^n x))  with  n integr natural.

findIn=dxsinnxwithnintegrnatural.

Answered by tanmay last updated on 14/May/19

I_n =∫cosec^n x dx  let n=even number  ∫cosec^(n−2) x cozec^2 xdx  ∫(cosec^2 x)^((n−2)/2) cosec^2 xdx  ∫(1+cot^2 x)^((n−2)/2) cosec^2 xdx  a=cotx  da=−cosec^2 xdx  ∫(1+a^2 )^((n−2)/2) ×−da  =(−1)∫[1+((n−2)/2)C_1 a^2 +((n−2)/2)C_2 a^4 +...+(a^2 )^((n−2)/2) ]da  =(−1)[a+((n−2)/2)C_1 ×(a^3 /3)+((n−2)/2)C_2 ×(a^5 /5)+..+(a^(n−1) /(n−1))]  now pls put cotx=a]  when n=odd  i am trying...

In=cosecnxdxletn=evennumbercosecn2xcozec2xdx(cosec2x)n22cosec2xdx(1+cot2x)n22cosec2xdxa=cotxda=cosec2xdx(1+a2)n22×da=(1)[1+n22C1a2+n22C2a4+...+(a2)n22]da=(1)[a+n22C1×a33+n22C2×a55+..+an1n1]nowplsputcotx=a]whenn=oddiamtrying...

Commented by Tawa1 last updated on 14/May/19

God bless you sir

Godblessyousir

Answered by MJS last updated on 14/May/19

trying Weierstrass  x=2arctan t  sin x =((2t)/(t^2 +1)); dx=((2dt)/(t^2 +1))  I_n =∫(dx/(sin^n  x))=(1/2^(n−1) )∫(((t^2 +1)^(n−1) )/t^n )dt=  =(1/2^(n−1) )∫(Σ_(k=1) ^n  (((n−1)),((k−1)) )(t^(2k−2) /t^n ))dt=  =(((n−1)!)/2^(n−1) )∫((1/t^2 )Σ_(k=1) ^n (t^(2k−n) /((k−1)!(n−k)!)))dt  I_1 =∫(1/t)dt  I_2 =(1/2)∫((1/t^2 )+1)dt  I_3 =(1/4)∫((1/t^3 )+(2/t)+t)dt  I_4 =(1/8)∫((1/t^4 )+(3/t^2 )+3+t^2 )dt  I_5 =(1/(16))∫((1/t^5 )+(4/t^3 )+(6/t)+4t+t^3 )dt  I_6 =(1/(32))∫((1/t^6 )+(5/t^4 )+((10)/t^2 )+10+5t^2 +t^4 )dt  ...

tryingWeierstrassx=2arctantsinx=2tt2+1;dx=2dtt2+1In=dxsinnx=12n1(t2+1)n1tndt==12n1(nk=1(n1k1)t2k2tn)dt==(n1)!2n1(1t2nk=1t2kn(k1)!(nk)!)dtI1=1tdtI2=12(1t2+1)dtI3=14(1t3+2t+t)dtI4=18(1t4+3t2+3+t2)dtI5=116(1t5+4t3+6t+4t+t3)dtI6=132(1t6+5t4+10t2+10+5t2+t4)dt...

Commented by maxmathsup by imad last updated on 14/May/19

thank you sir.

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com