Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 59753 by Aditya789 last updated on 14/May/19

x=(a+b)cosx−bcos(((a+b)/b))x  y=(a+b)sinx−bsin(((a+b)/b))x  find (dy/dx)=tan((a/(2b))+1)x

x=(a+b)cosxbcos(a+bb)xy=(a+b)sinxbsin(a+bb)xfinddydx=tan(a2b+1)x

Answered by tanmay last updated on 14/May/19

x+y=(a+b)(sinx+cosx)−b[sin(((a+b)/b))x+cos(((a+b)/b))x]  1+(dy/dx)=(a+b)(cosx−sinx)−b[cos(((a+b)/b))x−sin(((a+b)/b))x]×((a+b)/b)  1+(dy/dx)=(a+b)(cosx−sinx)−(a+b)[cos(((a+b)/b))x−sin(((a+b)/b))x]  1+(dy/dx)=(a+b)[cosx−cos(((a+b)/b))x]+(a+b)[sin(((a+b)/b))x−sinx]  1+(dy/dx)=(a+b)[2sin{((x+(((a+b)/b))x)/2)}sin{(((((a+b)/b))x−x)/2)}]+(a+b)[2cos{(((((a+b)/b))x+x)/2)}sin{(((((a+b)/b))x−x)/2)}]  1+(dy/dx)=(a+b)[2sin(((ax+2bx)/(2b)))sin(((ax)/(2b)))]+(a+b)[2cos(((ax+2bx)/(2b)))sin(((ax)/(2b)))]  (dy/dx)+1=2(a+b)sin(((ax)/(2b)))[sin(((ax+2bx)/(2b)))+cos(((ax+2bx)/(2b)))]  1+(dy/dx)=2(a+b)sin(((ax)/(2b)))[sin(((ax)/(2b))+x)+cos(((ax)/(2b))+x)]  1+(dy/dx)=((2(a+b)sin(((ax)/(2b)))cos(((ax)/(2b))+x)[1+tan(((ax)/(2b))+x)])/)  pls check the question...

x+y=(a+b)(sinx+cosx)b[sin(a+bb)x+cos(a+bb)x]1+dydx=(a+b)(cosxsinx)b[cos(a+bb)xsin(a+bb)x]×a+bb1+dydx=(a+b)(cosxsinx)(a+b)[cos(a+bb)xsin(a+bb)x]1+dydx=(a+b)[cosxcos(a+bb)x]+(a+b)[sin(a+bb)xsinx]1+dydx=(a+b)[2sin{x+(a+bb)x2}sin{(a+bb)xx2}]+(a+b)[2cos{(a+bb)x+x2}sin{(a+bb)xx2}]1+dydx=(a+b)[2sin(ax+2bx2b)sin(ax2b)]+(a+b)[2cos(ax+2bx2b)sin(ax2b)]dydx+1=2(a+b)sin(ax2b)[sin(ax+2bx2b)+cos(ax+2bx2b)]1+dydx=2(a+b)sin(ax2b)[sin(ax2b+x)+cos(ax2b+x)]1+dydx=2(a+b)sin(ax2b)cos(ax2b+x)[1+tan(ax2b+x)]plscheckthequestion...

Answered by $@ty@m last updated on 14/May/19

In my opinion, the question should be:z  x=(a+b)cosα−bcos(((a+b)/b))α ...(1)  y=(a+b)sinα−bsin(((a+b)/b))α ....(2)  find (dy/dx)=tan((a/(2b))+1)α  Solution:  Differentiating (1) w.r.t. α  (dx/dα)=−(a+b)sin α+b(((a+b)/b))sin (((a+b)/b))α  =(a+b){sin (((a+b)/b))α−sin α}  =(a+b){2cos (((a+2b)/b))α.sin (a/b)α} ...(3)  Differentiating (2) w.r.t. α  (dy/dα)=(a+b)cos  α−b(((a+b)/b))cos  (((a+b)/b))α  =(a+b){cos  α−cos  (((a+b)/b))α}  =(a+b).2sin (((a+2b)/b))αsin (a/b)α...(4)  ∴ (dy/dx)=((dy/dα)/(dx/dα))  =tan ((a+2b)/b)α

Inmyopinion,thequestionshouldbe:zx=(a+b)cosαbcos(a+bb)α...(1)y=(a+b)sinαbsin(a+bb)α....(2)finddydx=tan(a2b+1)αSolution:Differentiating(1)w.r.t.αdxdα=(a+b)sinα+b(a+bb)sin(a+bb)α=(a+b){sin(a+bb)αsinα}=(a+b){2cos(a+2bb)α.sinabα}...(3)Differentiating(2)w.r.t.αdydα=(a+b)cosαb(a+bb)cos(a+bb)α=(a+b){cosαcos(a+bb)α}=(a+b).2sin(a+2bb)αsinabα...(4)dydx=dydαdxdα=tana+2bbα

Terms of Service

Privacy Policy

Contact: info@tinkutara.com