All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 59753 by Aditya789 last updated on 14/May/19
x=(a+b)cosx−bcos(a+bb)xy=(a+b)sinx−bsin(a+bb)xfinddydx=tan(a2b+1)x
Answered by tanmay last updated on 14/May/19
x+y=(a+b)(sinx+cosx)−b[sin(a+bb)x+cos(a+bb)x]1+dydx=(a+b)(cosx−sinx)−b[cos(a+bb)x−sin(a+bb)x]×a+bb1+dydx=(a+b)(cosx−sinx)−(a+b)[cos(a+bb)x−sin(a+bb)x]1+dydx=(a+b)[cosx−cos(a+bb)x]+(a+b)[sin(a+bb)x−sinx]1+dydx=(a+b)[2sin{x+(a+bb)x2}sin{(a+bb)x−x2}]+(a+b)[2cos{(a+bb)x+x2}sin{(a+bb)x−x2}]1+dydx=(a+b)[2sin(ax+2bx2b)sin(ax2b)]+(a+b)[2cos(ax+2bx2b)sin(ax2b)]dydx+1=2(a+b)sin(ax2b)[sin(ax+2bx2b)+cos(ax+2bx2b)]1+dydx=2(a+b)sin(ax2b)[sin(ax2b+x)+cos(ax2b+x)]1+dydx=2(a+b)sin(ax2b)cos(ax2b+x)[1+tan(ax2b+x)]plscheckthequestion...
Answered by $@ty@m last updated on 14/May/19
Inmyopinion,thequestionshouldbe:zx=(a+b)cosα−bcos(a+bb)α...(1)y=(a+b)sinα−bsin(a+bb)α....(2)finddydx=tan(a2b+1)αSolution:Differentiating(1)w.r.t.αdxdα=−(a+b)sinα+b(a+bb)sin(a+bb)α=(a+b){sin(a+bb)α−sinα}=(a+b){2cos(a+2bb)α.sinabα}...(3)Differentiating(2)w.r.t.αdydα=(a+b)cosα−b(a+bb)cos(a+bb)α=(a+b){cosα−cos(a+bb)α}=(a+b).2sin(a+2bb)αsinabα...(4)∴dydx=dydαdxdα=tana+2bbα
Terms of Service
Privacy Policy
Contact: info@tinkutara.com