All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 59800 by necx1 last updated on 14/May/19
findthegeneralsolutiony(t)ofthe ordinarydifferentialequation y″+ω2y=cosωt,wherew>0
Answered by MJS last updated on 15/May/19
1stattempt y=C1cosωt+C2sinωt y″=−C1ω2cosωt−C2ω2sinωt y″+ω2y=0 2ndattempt y=C1cosωt+C2sinωt+C3tsinwt y″=−C1ω2cosωt−C2ω2sinωt+2C3ωcosωt−C3ω2tsinωt y″+ω2y=2C3ωcosωt ⇒C3=12ω ⇒y(t)=C1cosωt+(t2ω+C2)sinωt
Answered by tanmay last updated on 15/May/19
d2ydt2+w2y=coswt (D2+w2)y=coswt C.Fdetermination d2ydt2+w2y=0 lety=Aeαtisasolution dydt=Aαeαt d2ydt2=Aα2eαt Aα2eαt+w2Aeαt=0 Aeαt(α2+w2)=0 Aeαt≠0 α2+w2=0 α=±iw C.F y=C1eiwt+C2e−iwt Particularintregal y=coswtD2+w2 p=coswtD2+w2 q=sinwtD2+w2 p+iq=eiwt(D+iw)(D−iw) p+iq=eiwt(iw+iw)×1D+iw−iw p+iq=eiwt2iw×x[1D×1=x] p+iq=x(coswt+isinwt)2iw =xcoswt2w×i−1+xsinwt2w p+iq=(xsinwt2w)+i(−xcoswt2w) p=−xcoswt2w→(takingtherealpart) compltesolution y=C1eiwt+C2e−iwt+(−xcoswt2w) plschecktheanswer
Commented bynecx1 last updated on 15/May/19
hmmm....IthinkIneedtostudythis more
Terms of Service
Privacy Policy
Contact: info@tinkutara.com