Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59800 by necx1 last updated on 14/May/19

find the general solution y(t) of the  ordinary differential equation  y′′ + ω^2 y=cos ωt ,where w>0

findthegeneralsolutiony(t)ofthe ordinarydifferentialequation y+ω2y=cosωt,wherew>0

Answered by MJS last updated on 15/May/19

1^(st)  attempt       y=C_1 cos ωt +C_2 sin ωt       y′′=−C_1 ω^2 cos ωt −C_2 ω^2 sin ωt       y′′+ω^2 y=0  2^(nd)  attempt       y=C_1 cos ωt +C_2 sin ωt +C_3 tsin wt       y′′=−C_1 ω^2 cos ωt −C_2 ω^2 sin ωt +2C_3 ωcos ωt −C_3 ω^2 tsin ωt       y′′+ω^2 y=2C_3 ωcos ωt       ⇒ C_3 =(1/(2ω))       ⇒ y(t)=C_1 cos ωt +((t/(2ω))+C_2 )sin ωt

1stattempt y=C1cosωt+C2sinωt y=C1ω2cosωtC2ω2sinωt y+ω2y=0 2ndattempt y=C1cosωt+C2sinωt+C3tsinwt y=C1ω2cosωtC2ω2sinωt+2C3ωcosωtC3ω2tsinωt y+ω2y=2C3ωcosωt C3=12ω y(t)=C1cosωt+(t2ω+C2)sinωt

Answered by tanmay last updated on 15/May/19

(d^2 y/dt^2 )+w^2 y=coswt  (D^2 +w^2 )y=coswt  C.F  determination  (d^2 y/dt^2 )+w^2 y=0  let y=Ae^(αt)  is a solution  (dy/dt)=Aαe^(αt)   (d^2 y/dt^2 )=Aα^2 e^(αt)   Aα^2 e^(αt) +w^2 Ae^(αt) =0  Ae^(αt) (α^2 +w^2 )=0  Ae^(αt) ≠0  α^2 +w^2 =0  α=±iw  C.F  y=C_1 e^(iwt) +C_2 e^(−iwt)   Particular intregal  y=((coswt)/(D^2 +w^2 ))  p=((coswt)/(D^2 +w^2 ))  q=((sinwt)/(D^2 +w^2 ))  p+iq=(e^(iwt) /((D+iw)(D−iw)))  p+iq=(e^(iwt) /((iw+iw)))×(1/(D+iw−iw))  p+iq=(e^(iwt) /(2iw))×x  [(1/D)×1=x]  p+iq=((x(coswt+isinwt))/(2iw))  =((xcoswt)/(2w))×(i/(−1))+((xsinwt)/(2w))  p+iq=(((xsinwt)/(2w)))+i(((−xcoswt)/(2w)))  p=((−xcoswt)/(2w)) →(taking the real part)  complte solution  y=C_1 e^(iwt) +C_2 e^(−iwt) +(((−xcoswt)/(2w)))  pls check the answer

d2ydt2+w2y=coswt (D2+w2)y=coswt C.Fdetermination d2ydt2+w2y=0 lety=Aeαtisasolution dydt=Aαeαt d2ydt2=Aα2eαt Aα2eαt+w2Aeαt=0 Aeαt(α2+w2)=0 Aeαt0 α2+w2=0 α=±iw C.F y=C1eiwt+C2eiwt Particularintregal y=coswtD2+w2 p=coswtD2+w2 q=sinwtD2+w2 p+iq=eiwt(D+iw)(Diw) p+iq=eiwt(iw+iw)×1D+iwiw p+iq=eiwt2iw×x[1D×1=x] p+iq=x(coswt+isinwt)2iw =xcoswt2w×i1+xsinwt2w p+iq=(xsinwt2w)+i(xcoswt2w) p=xcoswt2w(takingtherealpart) compltesolution y=C1eiwt+C2eiwt+(xcoswt2w) plschecktheanswer

Commented bynecx1 last updated on 15/May/19

hmmm....I think I need to study this   more

hmmm....IthinkIneedtostudythis more

Terms of Service

Privacy Policy

Contact: info@tinkutara.com