Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 59833 by bhanukumarb2@gmail.com last updated on 15/May/19

Answered by tanmay last updated on 15/May/19

e^(iθ) =cosθ+isinθ  e^(−iθ) =cosθ−isinθ  cosθ=((e^(iθ) +e^(−iθ) )/2)→cosi=((e^(−1) +e^1 )/2)=a  isinθ=((e^(iθ) −e^(−iθ) )/2)→isini=((e^(−1) −e^1 )/2)=b  a>b  coti=((cosi)/(sini))=(((e^(−1) +e^1 )/2)/((e^(−1) −e^1 )/(2i)))=(a/(b/i))=i((a/b))  tani=((sini)/(cosi))=(((e^(−1) −e)/(2i))/((e^(−1) +e)/2))=((b/i)/a)=((b/a))×(1/i)=−((b/a))i  lim_(t→∞)  ((((cosi)^t +(isini)^t )/((tani)^t +(coti)^t )))^(1/t)   =lim_(t→∞)  [((a^t +b^t )/((((−bi)/a))^t +((a/b)i)^t ))]^(1/t)   =lim_(t→∞) [((a^t +b^t )/((((−b)^t ×i^t )/a^t )+(a^t /b^t )×i^t ))]^(1/t)   =lim_(t→∞)  [((a^t b^t (a^t +b^t ))/(b^(2t) ×(−1)^t ×i^t +a^(2t) ×i^t ))]^(1/t)   =lim_(t→∞) [(1/i^t )×((a^(2t) b^t +a^t b^(2t) )/(a^(2t) +(−1)^t b^(2t) ))]^(1/t) →[a>b]    =lim_(t→∞)  [(1/i^t )×((b^t +(b^(2t) /a^t ))/(1+(−1)(b^(2t) /a^(2t) )))]^(1/t)   =lim_(t→∞) [((b/i))^t ]^(1/t)   =(b/i)=((e^(−1) −e^1 )/(2i))=((i(e−(1/e)))/2)=z  imz=((e−(1/e))/2)  (imz)^2 +1  =((e^2 −2+(1/e^2 ))/4)+1  =((e^2 +2+(1/e^2 ))/4)=(((e+(1/e))/2))^2   so   imz+(√((imz)^2 +1))   =((e−(1/e))/2)+((e+(1/e))/2)  =e proved                        y=li_(t→∞)

eiθ=cosθ+isinθeiθ=cosθisinθcosθ=eiθ+eiθ2cosi=e1+e12=aisinθ=eiθeiθ2isini=e1e12=ba>bcoti=cosisini=e1+e12e1e12i=abi=i(ab)tani=sinicosi=e1e2ie1+e2=bia=(ba)×1i=(ba)ilimt((cosi)t+(isini)t(tani)t+(coti)t)1t=limt[at+bt(bia)t+(abi)t]1t=limt[at+bt(b)t×itat+atbt×it]1t=limt[atbt(at+bt)b2t×(1)t×it+a2t×it]1t=limt[1it×a2tbt+atb2ta2t+(1)tb2t]1t[a>b]=limt[1it×bt+b2tat1+(1)b2ta2t]1t=limt[(bi)t]1t=bi=e1e12i=i(e1e)2=zimz=e1e2(imz)2+1=e22+1e24+1=e2+2+1e24=(e+1e2)2soimz+(imz)2+1=e1e2+e+1e2=eprovedy=lit

Terms of Service

Privacy Policy

Contact: info@tinkutara.com