Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 59861 by ANTARES VY last updated on 15/May/19

(√(a+b(√c)))=(√((a+(√(a^2 −b^2 c)))/2))+(√((a−(√(a^2 −b^2 c)))/2)).  prove

a+bc=a+a2b2c2+aa2b2c2.prove

Commented by Kunal12588 last updated on 15/May/19

Commented by Kunal12588 last updated on 15/May/19

just put “ b^2 c ” in place of “ b ”

justputb2cinplaceofb

Answered by tanmay last updated on 15/May/19

((a+(√(a^2 −b^2 c)))/2)  =((2a+2(√((a+b(√c) )(a−b(√c) ))))/4)  =((a+b(√c) +a−b(√c) +2(√((a+b(√(c)(a−b(√(c))) )))))/4)  =((((√(a+b(√c) )) )^2 +((√(a−b(√c) )) )^2 +2(√((a+b(√c) )(a−b(√(c))) )))/4)  =(([(√(a+b(√c))) +(√(a−b(√c)  )) ]^2 )/2^2 )  so  (√((a+(√(a^2 −b^2 c)))/2)) +(√((a−(√(a^2 −b^2 c)))/2))   =(((√(a+b(√c) )) +(√(a−b(√c))) )/2)+(((√(a+b(√c))) −(√(a−b(√c))) )/2)  =(√(a+b(√c)))

a+a2b2c2=2a+2(a+bc)(abc)4=a+bc+abc+2(a+bc)(abc)4=(a+bc)2+(abc)2+2(a+bc)(abc)4=[a+bc+abc]222soa+a2b2c2+aa2b2c2=a+bc+abc2+a+bcabc2=a+bc

Answered by Kunal12588 last updated on 15/May/19

let (√(a+b(√c)))=(√m)+(√n)     (1)  ⇒a+(√(b^2 c))=m+n+2(√(mn))  ⇒m+n=a , 4mn=b^2 c  ⇒m−n=(√((m+n)^2 −4mn))=(√(a^2 −b^2 c))  ⇒m=((a+(√(a^2 −b^2 c)))/2) , n=((a−(√(a^2 −b^2 c)))/2)  from (1)  (√(a+b(√c)))=(√m)+(√n)  ⇒(√(a+b(√c)))=(√((a+(√(a^2 −b^2 c)))/2))+(√((a−(√(a^2 −b^2 c)))/2))  proved

leta+bc=m+n(1)a+b2c=m+n+2mnm+n=a,4mn=b2cmn=(m+n)24mn=a2b2cm=a+a2b2c2,n=aa2b2c2from(1)a+bc=m+na+bc=a+a2b2c2+aa2b2c2proved

Terms of Service

Privacy Policy

Contact: info@tinkutara.com