Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59926 by rahul 19 last updated on 16/May/19

Commented by rahul 19 last updated on 16/May/19

5,6.

5,6.

Answered by tanmay last updated on 16/May/19

cosxdy=ysinxdx−y^2 dx  −ysinxdx+cosxdy=−y^2 dx  ((−ysinxdx+cosxdy)/1)=−y^2 dx  d(cosx×y)=−y^2 dx  ((d(ycosx))/(y^2 cos^2 x))=−(dx/(cos^2 x))  ((−1)/((ycosx)))=−tanx−c  secx=y(tanx+c)

cosxdy=ysinxdxy2dxysinxdx+cosxdy=y2dxysinxdx+cosxdy1=y2dxd(cosx×y)=y2dxd(ycosx)y2cos2x=dxcos2x1(ycosx)=tanxcsecx=y(tanx+c)

Answered by tanmay last updated on 16/May/19

(dy/dx)=((xy^5 +2y)/x)  (dy/dx)=y^5 +((2y)/x)  (dy/dx)−((2y)/x)=y^5   y^(−5) (dy/dx)−((2y^(−4) )/x)=1  t=y^(−5+1)   (dt/dx)=−4×y^(−5) ×(dy/dx)  ((−1)/4)×(dt/dx)−((2t)/x)=1  (dt/dx)+((8t)/x)=−4  Intregating factor e^(∫(8/x)dx) =e^(8lnx) =x^8   x^8 (dt/dx)+8x^7 t=−4x^8   (d/dx)(x^8 ×t)=−4x^8   d(x^8 t)=−4x^8 dx  ∫d(x^8 t)=−4∫x^8 dx  x^8 t=((−4)/9)×x^9 +c  x^8 ×y^(−4) =((−4)/9)×x^9 +c  9x^8 =−4x^9 y^4 +y^4 ×9c  9x^8 +4x^9 y^4 =y^4 ×9c

dydx=xy5+2yxdydx=y5+2yxdydx2yx=y5y5dydx2y4x=1t=y5+1dtdx=4×y5×dydx14×dtdx2tx=1dtdx+8tx=4Intregatingfactore8xdx=e8lnx=x8x8dtdx+8x7t=4x8ddx(x8×t)=4x8d(x8t)=4x8dxd(x8t)=4x8dxx8t=49×x9+cx8×y4=49×x9+c9x8=4x9y4+y4×9c9x8+4x9y4=y4×9c

Commented by rahul 19 last updated on 16/May/19

thank you sir!

thankyousir!

Commented by tanmay last updated on 16/May/19

most welcome...now i think you are counting  days to wrestle with the math+physics in  coming exam...

mostwelcome...nowithinkyouarecountingdaystowrestlewiththemath+physicsincomingexam...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com