All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 59991 by selimatas01 last updated on 16/May/19
Commented by Mr X pcx last updated on 16/May/19
letI=∫0∞cosx(x2+1)2dx⇒2I=∫−∞+∞cosx(x2+1)2dx=Re(∫−∞+∞eix(x2+1)2dx)letconsiderthecomplexefunctionφ(z)=eiz(z2+1)2⇒φ(z)=eiz(z−i)2(z+i)2sothepolesofφareiand−i(doubles)redidustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i{(z−i)2φ(z)}(1)=limz→i{eiz(z+i)2}(1)=limz→iieiz(z+i)2−2(z+i)eiz(z+i)4=limz→iieiz(z+i)−2eiz(z+i)3=−2e−1−2e−1(2i)3=−4e−1−8i=e−12i⇒∫−∞+∞φ(z)dz=2iπe−12i=πe−1⇒2I=πe⇒★I=π2e★
Commented by selimatas01 last updated on 17/May/19
thankyouverymuch
Terms of Service
Privacy Policy
Contact: info@tinkutara.com