Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 59998 by Mr X pcx last updated on 16/May/19

find ∫ (dx/(acosx +bsinx))  with a and b reals

finddxacosx+bsinxwithaandbreals

Commented by mr W last updated on 16/May/19

a cos x+b sin x=(√(a^2 +b^2 ))((a/(√(a^2 +b^2 ))) cos x+(b/(√(a^2 +b^2 ))) sin x)  =(√(a^2 +b^2 ))(sin θ cos x+cos θ sin x)  =(√(a^2 +b^2 )) sin (x+θ)  with θ=tan^(−1) (a/b)  ∫ (dx/(acosx +bsinx))  =(1/(√(a^2 +b^2 )))∫ (dx/(sin(x+θ)))  =(1/(2(√(a^2 +b^2 ))))×ln ((1−cos (x+θ))/(1+cos (x+θ)))+C

acosx+bsinx=a2+b2(aa2+b2cosx+ba2+b2sinx)=a2+b2(sinθcosx+cosθsinx)=a2+b2sin(x+θ)withθ=tan1abdxacosx+bsinx=1a2+b2dxsin(x+θ)=12a2+b2×ln1cos(x+θ)1+cos(x+θ)+C

Commented by maxmathsup by imad last updated on 17/May/19

thanks you sir .

thanksyousir.

Commented by maxmathsup by imad last updated on 17/May/19

let I =∫  (dx/(acosx +bsinx))  changement tan((x/2))=t  give  I =∫  (1/(a ((1−t^2 )/(1+t^2 )) +b((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) = ∫  ((2dt)/(a−at^2  +2bt)) =∫ ((−2dt)/(at^2 −2bt−a)) =∫ F(t)dt  roots of at^2 −2bt −a =0 →Δ^′ =b^2  +a^2   for a≠0  ⇒Δ^′ >0 ⇒  t_1 =((b+(√(a^2  +b^2 )))/a)  and t_2 =((b−(√(a^2  +b^2 )))/a) ⇒F(t) =((−2)/(a(t−t_1 )(t−t_2 )))  =((−2)/(a(t_1 −t_2 ))){ (1/(t−t_1 )) −(1/(t−t_2 ))} =((−2)/(2(√(a^2  +b^2 )))){(1/(t−t_1 )) −(1/(t−t_2 ))} ⇒  I =(1/(√(a^2 +b^2 )))ln∣((t−t_1 )/(t−t_2 ))∣ +C =(1/(√(a^2  +b^2 )))ln∣((tan((x/2))−((b+(√(a^2  +b^2 )))/a))/(tan((x/2))−((b−(√(a^2  +b^2 )))/a)))∣ +C  =(1/(√(a^2  +b^2 )))ln∣((atan((x/2))−b−(√(a^2 +b^2 )))/(atan((x/2))−b +(√(a^2  +b^2 ))))∣ +C .

letI=dxacosx+bsinxchangementtan(x2)=tgiveI=1a1t21+t2+b2t1+t22dt1+t2=2dtaat2+2bt=2dtat22bta=F(t)dtrootsofat22bta=0Δ=b2+a2fora0Δ>0t1=b+a2+b2aandt2=ba2+b2aF(t)=2a(tt1)(tt2)=2a(t1t2){1tt11tt2}=22a2+b2{1tt11tt2}I=1a2+b2lntt1tt2+C=1a2+b2lntan(x2)b+a2+b2atan(x2)ba2+b2a+C=1a2+b2lnatan(x2)ba2+b2atan(x2)b+a2+b2+C.

Answered by kaivan.ahmadi last updated on 16/May/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com