Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 60039 by MJS last updated on 17/May/19

find all solutions for z∈C  z^i =(1/2)−(1/2)i  z^(1−i) =1+i

findallsolutionsforzCzi=1212iz1i=1+i

Commented by maxmathsup by imad last updated on 18/May/19

 we have z^i  =e^(iln(z))   so if z=r e^(iθ)   we get   ln(z) =ln(r)+iθ ⇒z^i  =e^(i{ln(r)+iθ})  =e^(−θ)  e^(iln(r)) =e^(−θ) {cos(ln(r) +isin(ln(r)}  z^i =(1/2) −(1/2)i ⇒ e^(−θ) cos(ln(r))=(1/2) and e^(−θ)  sin(ln(r))=−(1/2) ⇒  e^(−2θ)  {cos^2 (lnr) +sin^2 (ln(r))} =(1/4) +(1/4) =(1/2) ⇒e^(−2θ) =(1/2) ⇒−2θ =−ln(2)  ⇒θ =((ln(2))/2)  also we have    ((sin(lnr))/(cos(lnr))) =−1 ⇒tan(lnr) =−1 ⇒  ln(r) =arctan(−1) =−(π/4) ⇒r =e^(−(π/4))  ⇒z =e^(−(π/4))  e^(i((ln(2))/2))   .

wehavezi=eiln(z)soifz=reiθwegetln(z)=ln(r)+iθzi=ei{ln(r)+iθ}=eθeiln(r)=eθ{cos(ln(r)+isin(ln(r)}zi=1212ieθcos(ln(r))=12andeθsin(ln(r))=12e2θ{cos2(lnr)+sin2(ln(r))}=14+14=12e2θ=122θ=ln(2)θ=ln(2)2alsowehavesin(lnr)cos(lnr)=1tan(lnr)=1ln(r)=arctan(1)=π4r=eπ4z=eπ4eiln(2)2.

Commented by maxmathsup by imad last updated on 18/May/19

in my solution i have taken the principal determination of log.

inmysolutionihavetakentheprincipaldeterminationoflog.

Commented by maxmathsup by imad last updated on 19/May/19

all solution for this equation are Z_n =e^(−(π/4))  e^(i(((ln(2))/2) +2nπ))

allsolutionforthisequationareZn=eπ4ei(ln(2)2+2nπ)

Answered by tanmay last updated on 17/May/19

(A+iB)^(P+iQ)   =e^((P+iQ)Log(A+iB))   Log(A+iB)  A=rcosθ    B=rsinθ  Log(re^(iθ) )  =Log_e (re^(i(2kπ+θ))   =log_e r+i(2kπ+θ)  =(1/2)log_e (A^2 +B^2 )+i[2kπ+tan^(−1) ((B/A))]  e^((P+iQ)[(1/2)log(A^2 +B^2 )+i{2kπ+tan^(−1) ((B/A))}])   e^p ×e^([{−Q(2kπ+tan^(−1) ((B/A))}+i(Q/2)log(A^2 +B^2 )])   e^P ×e^(−Q(2kπ+tan^(−1) ((B/A))) ×e^(i×(Q/2)log(A^2 +B^2 ))   e^(P−Q(2kπ+tan^(−1) ((B/A))) ×[cos(((Qlog(A^2 +B^2 ))/2))+isin(((Qlog(A^2 +B^2 ))/2))]  wait sir...  now put P=0  and Q=1  e^(−(2kπ+tan^(−1) ((B/A)))) ×[cos(((log(A^2 +B^2 ))/2))+isin(((log(A^2 +B^2 )/2))]  still[to go...

(A+iB)P+iQ=e(P+iQ)Log(A+iB)Log(A+iB)A=rcosθB=rsinθLog(reiθ)=Loge(rei(2kπ+θ)=loger+i(2kπ+θ)=12loge(A2+B2)+i[2kπ+tan1(BA)]e(P+iQ)[12log(A2+B2)+i{2kπ+tan1(BA)}]ep×e[{Q(2kπ+tan1(BA)}+iQ2log(A2+B2)]eP×eQ(2kπ+tan1(BA)×ei×Q2log(A2+B2)ePQ(2kπ+tan1(BA)×[cos(Qlog(A2+B2)2)+isin(Qlog(A2+B2)2)]waitsir...nowputP=0andQ=1e(2kπ+tan1(BA))×[cos(log(A2+B2)2)+isin(log(A2+B22)]still[togo...

Commented by MJS last updated on 18/May/19

nice until here. thanks a lot!  I′m really not sure how to solve these, will  look into it soon...

niceuntilhere.thanksalot!Imreallynotsurehowtosolvethese,willlookintoitsoon...

Answered by Smail last updated on 18/May/19

(1)z^i =(1/2)−(1/2)i=(1/(√2))e^(i(π/4)) =2^(−(1/2)) e^(i((π/4)+2kπ))   z=2^(−(1/(2i))) e^((π/4)+2kπ) =2^(i/2) e^((π/4)+2kπ)   =e^((i/2)ln2) ×e^((π/4)+2kπ)   z=e^((π/4)+2kπ) e^(i((ln2)/2)) =e^((π/4)+2kπ) 2^(i/2)   (2)z^(1−i) =1+i=(√2)e^(i((π/4)+2kπ)) =2^(1/2) e^(i((π/4)+2kπ))   z=2^(1/(2(1−i))) e^((i/(1−i))(π/4+2kπ)) =2^((1+i)/4) ×e^(((i−1)/2)((π/4)+2kπ))   =2^(1/4) ×e^((i/4)ln2) ×e^((i/2)((π/4)+2kπ)) ×e^(−(1/2)((π/4)+2kπ))   z=(2)^(1/4) e^(−((π/4+2kπ)/2)) ×e^(i((π/4)+2kπ+((ln2)/4)))

(1)zi=1212i=12eiπ4=212ei(π4+2kπ)z=212ieπ4+2kπ=2i2eπ4+2kπ=ei2ln2×eπ4+2kπz=eπ4+2kπeiln22=eπ4+2kπ2i/2(2)z1i=1+i=2ei(π4+2kπ)=212ei(π4+2kπ)z=212(1i)ei1i(π/4+2kπ)=21+i4×ei12(π4+2kπ)=214×ei4ln2×ei2(π4+2kπ)×e12(π4+2kπ)z=24eπ/4+2kπ2×ei(π4+2kπ+ln24)

Commented by MJS last updated on 18/May/19

thank you so far. but which values of k are  appropriate?

thankyousofar.butwhichvaluesofkareappropriate?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com