Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 60043 by Kunal12588 last updated on 17/May/19

Show that in a 30°−60°−90° triangle the   altitude on the hypotaneuse divides the   hypotaneuse into segments whose length  has the ratio 1/3.  without using trigonometry.

$${Show}\:{that}\:{in}\:{a}\:\mathrm{30}°−\mathrm{60}°−\mathrm{90}°\:{triangle}\:{the}\: \\ $$$${altitude}\:{on}\:{the}\:{hypotaneuse}\:{divides}\:{the}\: \\ $$$${hypotaneuse}\:{into}\:{segments}\:{whose}\:{length} \\ $$$${has}\:{the}\:{ratio}\:\mathrm{1}/\mathrm{3}. \\ $$$${without}\:{using}\:{trigonometry}. \\ $$

Answered by tanmay last updated on 17/May/19

The eqn of hypotaneous  (x/a)+(y/b)=1  bx+ay=ab  y=((−bx)/a)+b →slopse m_1 =−(b/a)  eq of st line ⊥to hypotaneous and passing  through origin(0,0)  y=m_2 x    m_1 ×m_2 =−1  m_2 =((−1)/((−b)/a))=(a/b)     y=(a/b)x  solve y=(a/b)x and (x/a)+(y/b)=1  to get point C which devide AB   in (1/3)  ratio  (x/b)=(y/a)=k→x=bk   y=ak    ((bk)/a)+((ak)/b)=1→k(a^2 +b^2 )=ab  k=((ab)/(a^2 +b^2 ))  x=((ab^2 )/(a^2 +b^2 ))   y=((a^2 b)/(a^2 +b^2 ))  A(0,b)   B(a,0)   O(0,0)   and C(((ab^2 )/(a^2 +b^2 )),((a^2 b)/(a^2 +b^2 )))  let C devides AB    (m/n) ratio  ((ab^2 )/(a^2 +b^2 ))=((m×0+n×a)/(m+n))  mab^2 +nab^2 =na^3 +nab^2   (m/n)=(a^3 /(ab^2 ))=(a^2 /b^2 )  now slope of AB is m_1 =((−b)/a)  let AB makes angle θ with OB  so  slope(m_1 )=((−b)/a)=tan(180^o −60^o )=−(√3)   (b/a)=(√3)   (m/n)=(a^2 /b^2 )=(1/3)  proved  ■■ if we take θ=30^o   slope=((−b)/a)=tan(180^o −30^o )=−(1/(√3))  (b/a)=(1/(√3))  then (m/n)=(a^2 /b^2 )=3   so rstion (3/1) also fulfill...    note Triangle OAB  OA⊥OB   znd AB hypotaneous

$${The}\:{eqn}\:{of}\:{hypotaneous} \\ $$$$\frac{{x}}{{a}}+\frac{{y}}{{b}}=\mathrm{1} \\ $$$${bx}+{ay}={ab} \\ $$$${y}=\frac{−{bx}}{{a}}+{b}\:\rightarrow{slopse}\:{m}_{\mathrm{1}} =−\frac{{b}}{{a}} \\ $$$${eq}\:{of}\:{st}\:{line}\:\bot{to}\:{hypotaneous}\:{and}\:{passing} \\ $$$${through}\:{origin}\left(\mathrm{0},\mathrm{0}\right) \\ $$$${y}={m}_{\mathrm{2}} {x}\:\:\:\:{m}_{\mathrm{1}} ×{m}_{\mathrm{2}} =−\mathrm{1} \\ $$$${m}_{\mathrm{2}} =\frac{−\mathrm{1}}{\frac{−{b}}{{a}}}=\frac{{a}}{{b}}\:\:\: \\ $$$${y}=\frac{{a}}{{b}}{x} \\ $$$${solve}\:{y}=\frac{{a}}{{b}}{x}\:{and}\:\frac{{x}}{{a}}+\frac{{y}}{{b}}=\mathrm{1} \\ $$$${to}\:{get}\:{point}\:{C}\:{which}\:{devide}\:{AB}\:\:\:{in}\:\frac{\mathrm{1}}{\mathrm{3}}\:\:{ratio} \\ $$$$\frac{{x}}{{b}}=\frac{{y}}{{a}}={k}\rightarrow{x}={bk}\:\:\:{y}={ak}\:\: \\ $$$$\frac{{bk}}{{a}}+\frac{{ak}}{{b}}=\mathrm{1}\rightarrow{k}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)={ab}\:\:{k}=\frac{{ab}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${x}=\frac{{ab}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:\:\:{y}=\frac{{a}^{\mathrm{2}} {b}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${A}\left(\mathrm{0},{b}\right)\:\:\:{B}\left({a},\mathrm{0}\right)\:\:\:{O}\left(\mathrm{0},\mathrm{0}\right)\:\:\:{and}\:\boldsymbol{{C}}\left(\frac{{ab}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} },\frac{{a}^{\mathrm{2}} {b}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right) \\ $$$${let}\:{C}\:{devides}\:{AB}\:\:\:\:\frac{{m}}{{n}}\:{ratio} \\ $$$$\frac{{ab}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }=\frac{{m}×\mathrm{0}+{n}×{a}}{{m}+{n}} \\ $$$${mab}^{\mathrm{2}} +{nab}^{\mathrm{2}} ={na}^{\mathrm{3}} +{nab}^{\mathrm{2}} \\ $$$$\frac{{m}}{{n}}=\frac{{a}^{\mathrm{3}} }{{ab}^{\mathrm{2}} }=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} } \\ $$$${now}\:{slope}\:{of}\:{AB}\:{is}\:{m}_{\mathrm{1}} =\frac{−{b}}{{a}} \\ $$$${let}\:{AB}\:{makes}\:{angle}\:\theta\:{with}\:{OB} \\ $$$${so}\:\:{slope}\left({m}_{\mathrm{1}} \right)=\frac{−{b}}{{a}}={tan}\left(\mathrm{180}^{{o}} −\mathrm{60}^{{o}} \right)=−\sqrt{\mathrm{3}}\: \\ $$$$\frac{{b}}{{a}}=\sqrt{\mathrm{3}}\: \\ $$$$\frac{{m}}{{n}}=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{3}}\:\:{proved} \\ $$$$\blacksquare\blacksquare\:{if}\:{we}\:{take}\:\theta=\mathrm{30}^{{o}} \\ $$$${slope}=\frac{−{b}}{{a}}={tan}\left(\mathrm{180}^{{o}} −\mathrm{30}^{{o}} \right)=−\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$$\frac{{b}}{{a}}=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$${then}\:\frac{{m}}{{n}}=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{3}\: \\ $$$${so}\:{rstion}\:\frac{\mathrm{3}}{\mathrm{1}}\:{also}\:{fulfill}... \\ $$$$ \\ $$$${note}\:{Triangle}\:{OAB} \\ $$$${OA}\bot{OB}\:\:\:{znd}\:{AB}\:{hypotaneous} \\ $$$$ \\ $$

Commented by Kunal12588 last updated on 17/May/19

sir you still used trigonometry (tangent)

$${sir}\:{you}\:{still}\:{used}\:{trigonometry}\:\left({tangent}\right) \\ $$

Commented by Kunal12588 last updated on 17/May/19

but i like your way sir (pls let it be here)

$${but}\:{i}\:{like}\:{your}\:{way}\:{sir}\:\left({pls}\:{let}\:{it}\:{be}\:{here}\right) \\ $$

Answered by mr W last updated on 17/May/19

Commented by mr W last updated on 17/May/19

let AB=1, AF=x  ⇒BC=CE=1  ⇒CD=x  ⇒FE=ED=(√(x^2 −1))  ⇒AD=2+x  AD^2 =AF^2 +FD^2   ⇒(2+x)^2 =x^2 +(2(√(x^2 −1)))^2   ⇒4+4x+x^2 =x^2 +4x^2 −4  ⇒x^2 −x−2=0  ⇒(x+1)(x−2)=0  ⇒x=2  ⇒BD=1+2=3  ⇒AB/BD=1/3 ⇒proved

$${let}\:{AB}=\mathrm{1},\:{AF}={x} \\ $$$$\Rightarrow{BC}={CE}=\mathrm{1} \\ $$$$\Rightarrow{CD}={x} \\ $$$$\Rightarrow{FE}={ED}=\sqrt{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\Rightarrow{AD}=\mathrm{2}+{x} \\ $$$${AD}^{\mathrm{2}} ={AF}^{\mathrm{2}} +{FD}^{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{2}+{x}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +\left(\mathrm{2}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}+\mathrm{4}{x}+{x}^{\mathrm{2}} ={x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −{x}−\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\left({x}+\mathrm{1}\right)\left({x}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{2} \\ $$$$\Rightarrow{BD}=\mathrm{1}+\mathrm{2}=\mathrm{3} \\ $$$$\Rightarrow{AB}/{BD}=\mathrm{1}/\mathrm{3}\:\Rightarrow{proved} \\ $$

Commented by Kunal12588 last updated on 17/May/19

sir i tried pls check  △AFC is equilateral   ⇒FC=AC=AB+BC=2  FC=DC  ⇒AC=DC  ⇒x=2  ((AB)/(BD))=(1/(x+1))=(1/(2+1))=(1/3)

$${sir}\:{i}\:{tried}\:{pls}\:{check} \\ $$$$\bigtriangleup{AFC}\:{is}\:{equilateral}\: \\ $$$$\Rightarrow{FC}={AC}={AB}+{BC}=\mathrm{2} \\ $$$${FC}={DC} \\ $$$$\Rightarrow{AC}={DC} \\ $$$$\Rightarrow{x}=\mathrm{2} \\ $$$$\frac{{AB}}{{BD}}=\frac{\mathrm{1}}{{x}+\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}+\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Commented by mr W last updated on 17/May/19

nice path sir!

$${nice}\:{path}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com