All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 60050 by maxmathsup by imad last updated on 17/May/19
calculate∫01(x3−2)x2+3dx
Commented by maxmathsup by imad last updated on 18/May/19
letA=∫01(x3−2)x2+3dx⇒A=∫01x3x2+3dx−2∫01x2+3dx=H−Kchangementx2+3=tgivex2+3=t2⇒2xdx=2tdt⇒A=∫32(t2−3)ttdt=∫32t2(t2−3)dt=∫32(t4−3t2)dt=[15t5−t3]32=325−8−15(3)5+(3)3∫01x2+3dx=x=3sh(t)∫0argsh(13)3ch(t)3ch(t)dt=3∫0ln(13+1+13)ch2(t)dt=32∫0ln(13+23)(1+ch(2t))dt=32ln(3)+34[sh(2t)]0ln(3)=32ln(3)+38[e2t−e−2t]0ln(3)=34ln(3)+38{(3)2−1(3)2}=34ln(3)+38{3−13}=34ln(3)+1sothevalueofAisdetermined.
Answered by tanmay last updated on 17/May/19
∫x3x2+3dx−2∫x2+3dxI1=∫x3x2+3dxt2=x2+32tdt=2xdx∫x2×xx2+3dx∫(t2−3)×t×tdt∫(t4−3t2)dt=t55−t3+c=(x2+3)525−(x2+3)32+cI2=∫x2+3dx→useformula=xx2+32+32ln(x+x2+3)+c1I=I1−2I2I=∣(x2+3)525−(x2+3)32−xx2+3−3ln(x+x2+3)∣01=15{(4)52−(3)52}−{(4)32−332}−{4−0}−3ln(33)=325−953−8+33−2−32ln3=325−10+33(1−35)−32ln3=−185+653−32ln3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com