Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60050 by maxmathsup by imad last updated on 17/May/19

calculate ∫_0 ^1 (x^3 −2)(√(x^2  +3))dx

calculate01(x32)x2+3dx

Commented by maxmathsup by imad last updated on 18/May/19

let A =∫_0 ^1 (x^3 −2)(√(x^2  +3))dx ⇒A =∫_0 ^1 x^3 (√(x^2  +3))dx −2 ∫_0 ^1 (√(x^2  +3))dx=H−K  changement (√(x^2  +3))=t give  x^2  +3 =t^2  ⇒2xdx =2tdt ⇒  A =∫_(√3) ^2 (t^2 −3)t tdt =∫_(√3) ^2 t^2 (t^2 −3)dt =∫_(√3) ^2 (t^4 −3t^2 )dt  =[(1/5)t^5 −t^3 ]_(√3) ^2  =((32)/5) −8−(1/5)((√3))^5  +((√3))^3   ∫_0 ^1 (√(x^2  +3))dx =_(x =(√3)sh(t))    ∫_0 ^(argsh((1/(√3)))) (√3)ch(t)(√3)ch(t)dt  =3 ∫_0 ^(ln((1/(√3)) +(√(1+(1/3))))) ch^2 (t)dt =(3/2) ∫_0 ^(ln((1/(√3))+(2/(√3)))) (1+ch(2t))dt  =(3/2)ln((√3)) +(3/4)[sh(2t)]_0 ^(ln((√3)))  =(3/2)ln((√3))+(3/8)[e^(2t) −e^(−2t) ]_0 ^(ln((√3)))   =(3/4)ln(3) +(3/8){ ((√3))^2 −(1/(((√3))^2 ))} =(3/4)ln(3)+(3/8){3−(1/3)}  =(3/4)ln(3) +1  so the value of A is determined .

letA=01(x32)x2+3dxA=01x3x2+3dx201x2+3dx=HKchangementx2+3=tgivex2+3=t22xdx=2tdtA=32(t23)ttdt=32t2(t23)dt=32(t43t2)dt=[15t5t3]32=325815(3)5+(3)301x2+3dx=x=3sh(t)0argsh(13)3ch(t)3ch(t)dt=30ln(13+1+13)ch2(t)dt=320ln(13+23)(1+ch(2t))dt=32ln(3)+34[sh(2t)]0ln(3)=32ln(3)+38[e2te2t]0ln(3)=34ln(3)+38{(3)21(3)2}=34ln(3)+38{313}=34ln(3)+1sothevalueofAisdetermined.

Answered by tanmay last updated on 17/May/19

∫x^3 (√(x^2 +3)) dx−2∫(√(x^2 +3)) dx  I_1 =∫x^3 (√(x^2 +3)) dx  t^2 =x^2 +3  2tdt=2xdx  ∫x^2 ×x(√(x^2 +3)) dx  ∫(t^2 −3)×t×tdt  ∫(t^4 −3t^2 )dt  =(t^5 /5)−t^3 +c  =(((x^2 +3)^(5/2) )/5)−(x^2 +3)^(3/2) +c  I_2 =∫(√(x^2 +3)) dx→use formula  =((x(√(x^2 +3)))/2)+(3/2)ln(x+(√(x^2 +3)) )+c_1   I=I_1 −2I_2   I=∣(((x^2 +3)^(5/2) )/5)−(x^2 +3)^(3/2)  −x(√(x^2 +3)) −3ln(x+(√(x^2 +3)) )∣_0 ^1   =(1/5){(4)^(5/2) −(3)^(5/2) }−{(4)^(3/2) −3^(3/2) }−{(√4) −0}−3ln((3/(√3)))  =((32)/5)−(9/5)(√3) −8+3(√3) −2−(3/2)ln3  =((32)/5)−10+3(√3) (1−(3/5))−(3/2)ln3  =((−18)/5)+(6/5)(√3) −(3/2)ln3

x3x2+3dx2x2+3dxI1=x3x2+3dxt2=x2+32tdt=2xdxx2×xx2+3dx(t23)×t×tdt(t43t2)dt=t55t3+c=(x2+3)525(x2+3)32+cI2=x2+3dxuseformula=xx2+32+32ln(x+x2+3)+c1I=I12I2I=∣(x2+3)525(x2+3)32xx2+33ln(x+x2+3)01=15{(4)52(3)52}{(4)32332}{40}3ln(33)=3259538+33232ln3=32510+33(135)32ln3=185+65332ln3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com