Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 60054 by bhanukumarb2@gmail.com last updated on 17/May/19

Commented by bhanukumarb2@gmail.com last updated on 17/May/19

is titu lemma applicable here??plz see  previous doubts

istitulemmaapplicablehere??plzseepreviousdoubts

Answered by tanmay last updated on 17/May/19

8x^3 −4x^2 −4x+1=0  roots are cos((π/7)),cos(((3π)/7)),cos(((5π)/7))  now cos(((5π)/7))=cos(((7π−2π)/7))=cos(π−((2π)/7))=−cos(((2π)/7))  let c_1 =cos((π/7))   so s_1 =sin((π/7))  c_2 =cos(((2π)/7))   s_2 =sin(((2π)/7))  c_3 =cos(((3π)/7))    s_3 =(((3π)/7))  ★★c_5 =cos(((5π)/7))=−cos(((2π)/7))=−c_2 ★★  our task to find value of  (s_1 ^2 /s_2 ^4 )+(s_3 ^2 /s_1 ^4 )+(s_2 ^2 /s_3 ^4 )  8x^3 −4x^2 −4x+1=0  roots are c_1 ,c_3 ,c_5    [note c_5 =−c_2 ]  c_1 +c_3 +c_5 =((−(−4))/8)=(1/2)  c_1 −c_2 +c_3 =(1/2)  c_1 c_3 +c_1 c_5 +c_3 c_5 =((−4)/8)  c_1 c_3 +c_1 (−c_2 )+c_3 (−c_2 )=((−4)/8)  c_1 c_3 −c_1 c_2 −c_3 c_2 =((−1)/2)  c_1 c_3 c_5 =((−1)/8)  c_1 ×c_3 ×−c_2 =((−1)/8)  c_1 c_2 c_3 =(1/8)  (s_1 ^2 /s_2 ^4 )+(s_3 ^2 /s_1 ^4 )+(s_2 ^2 /s_3 ^4 )=((s_1 ^2 (s_1 ^4 s_3 ^4 )+s_3 ^2 (s_2 ^4 s_3 ^4 )+s_2 ^2 (s_2 ^4 s_1 ^4 ))/((s_1 s_2 s_3 )^4 ))  =((s_1 ^6 s_3 ^4 +s_3 ^6 s_2 ^4 +s_2 ^6 s_1 ^(4i) )/((s_1 s_2 s_3 )^4 ))    8c^3 −4c^2 −4c+1=0  c^2 +s^2 =1  8(1−s^2 )(√(1−s^2 )) −4(1−s^2 )−4((√(1−s^2 )))+1=0  4×(√(1−s^2 )) (2−2s^2 −1)=4(1−s^2 )−1  4×(√(1−s^2 )) (1−2s^2 )=(3−4s^2 )  16(1−s^2 )(1−4s^2 +4s^4 )=9−24s^2 +16s^4   16(1−4s^2 +4s^4 −s^2 +4s^4 −4s^6 )=9−24s^2 +16s^4   −64s^6 +128s^4 −80s^2 +16−16s^4 +24s^2 −9=0  −64s^6 +112s^4 −53s^2 +7=0  if s^2 =t  −64t^3 +112t^2 −53t+7=0  s_1 ^2 +s_2 ^2 +s_3 ^2 =((112)/(64))  s_1 ^2 s_2 ^2 +s_1 ^2 s_3 ^2 +s_2 ^2 s_3 ^2 =((53)/(64))  s_1 ^2 s_2 ^2 s_3 ^2 =(7/(64))  wait i am trying...

8x34x24x+1=0rootsarecos(π7),cos(3π7),cos(5π7)nowcos(5π7)=cos(7π2π7)=cos(π2π7)=cos(2π7)letc1=cos(π7)sos1=sin(π7)c2=cos(2π7)s2=sin(2π7)c3=cos(3π7)s3=(3π7)c5=cos(5π7)=cos(2π7)=c2ourtasktofindvalueofs12s24+s32s14+s22s348x34x24x+1=0rootsarec1,c3,c5[notec5=c2]c1+c3+c5=(4)8=12c1c2+c3=12c1c3+c1c5+c3c5=48c1c3+c1(c2)+c3(c2)=48c1c3c1c2c3c2=12c1c3c5=18c1×c3×c2=18c1c2c3=18s12s24+s32s14+s22s34=s12(s14s34)+s32(s24s34)+s22(s24s14)(s1s2s3)4=s16s34+s36s24+s26s14i(s1s2s3)48c34c24c+1=0c2+s2=18(1s2)1s24(1s2)4(1s2)+1=04×1s2(22s21)=4(1s2)14×1s2(12s2)=(34s2)16(1s2)(14s2+4s4)=924s2+16s416(14s2+4s4s2+4s44s6)=924s2+16s464s6+128s480s2+1616s4+24s29=064s6+112s453s2+7=0ifs2=t64t3+112t253t+7=0s12+s22+s32=11264s12s22+s12s32+s22s32=5364s12s22s32=764waitiamtrying...

Commented by bhanukumarb2@gmail.com last updated on 17/May/19

thanku sir i will do next part thanku

thankusiriwilldonextpartthanku

Commented by otchereabdullai@gmail.com last updated on 17/May/19

Brilliant prof Tanmay

BrilliantprofTanmay

Terms of Service

Privacy Policy

Contact: info@tinkutara.com