Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 60056 by bhanukumarb2@gmail.com last updated on 17/May/19

Commented by maxmathsup by imad last updated on 17/May/19

we see that  S =Σ_(k=0) ^∞  ((sin(kθ)cos^k θ)/(k!)) ⇒S =Im(Σ_(k=0) ^∞  ((e^(ikθ)  cos^k θ)/(k!))) but  Σ_(k=0) ^∞   ((e^(ikθ)  cos^k θ)/(k!)) =Σ_(k=0) ^∞   (((e^(iθ)  cosθ)^k )/(k!)) =e^((e^(iθcosθ)) )     =e^(cos(θ cosθ) +isin(θ cosθ)))   =e^(cos(θ cosθ)) { cos(sin(θcosθ) +i sin(sin(θ cosθ)) } ⇒  S =e^(cos(θ cosθ))  sin(sin(θ cosθ)) .

weseethatS=k=0sin(kθ)coskθk!S=Im(k=0eikθcoskθk!)butk=0eikθcoskθk!=k=0(eiθcosθ)kk!=e(eiθcosθ)=ecos(θcosθ)+isin(θcosθ))=ecos(θcosθ){cos(sin(θcosθ)+isin(sin(θcosθ))}S=ecos(θcosθ)sin(sin(θcosθ)).

Answered by tanmay last updated on 17/May/19

p=cosθcosθ+((cos2θcos^2 θ)/(2!))+((cos3θcos^3 θ)/(3!))+...  q=sinθcosθ+((sin2θcos^2 θ)/(2!))+((sin3θcos^3 θ)/(3!))+..  p+iq  =e^(iθ) cosθ+e^(i2θ) ×((cos^2 θ)/(2!))+((e^(i3θ) ×cos^3 θ)/(3!))+...  t=e^(iθ) cosθ  p+iq=t+(t^2 /(2!))+(t^3 /(3!))+...  =e^t −1  =e^(e^(iθ) cosθ) −1  =e^(cosθ(cosθ+isinθ)) −1  =e^(cos^2 θ+isinθcosθ) −1  =e^(cos^2 θ) ×(e^(isinθcosθ) )−1  =e^(cos^2 θ) ×e^((isin2θ)/2) −1  =e^(cos^2 θ) [cos(((sin2θ)/2))+isin(((sin2θ)/2))]−1  =e^(cos^2 θ) [cos(((sin2θ)/2))]−1+ie^(cos^2 θ) sin(((sin2θ)/2))  So p=e^(cos^2 θ) [cos(((sin2θ)/2))]−1←real part  q=e^(cos^2 θ) sin(((sin2θ)/2))←imaginary part  So required answer is  q=e^(cos^2 θ) sin(((sin2θ)/2))  pls check....

p=cosθcosθ+cos2θcos2θ2!+cos3θcos3θ3!+...q=sinθcosθ+sin2θcos2θ2!+sin3θcos3θ3!+..p+iq=eiθcosθ+ei2θ×cos2θ2!+ei3θ×cos3θ3!+...t=eiθcosθp+iq=t+t22!+t33!+...=et1=eeiθcosθ1=ecosθ(cosθ+isinθ)1=ecos2θ+isinθcosθ1=ecos2θ×(eisinθcosθ)1=ecos2θ×eisin2θ21=ecos2θ[cos(sin2θ2)+isin(sin2θ2)]1=ecos2θ[cos(sin2θ2)]1+iecos2θsin(sin2θ2)Sop=ecos2θ[cos(sin2θ2)]1realpartq=ecos2θsin(sin2θ2)imaginarypartSorequiredanswerisq=ecos2θsin(sin2θ2)plscheck....

Commented by bhanukumarb2@gmail.com last updated on 17/May/19

right sir thanku

rightsirthanku

Terms of Service

Privacy Policy

Contact: info@tinkutara.com