Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 60121 by rahul 19 last updated on 18/May/19

Commented by rahul 19 last updated on 18/May/19

time period is given as : 2π(√((ρL)/(σg))) .  Isn′t data insufficient ?

$${time}\:{period}\:{is}\:{given}\:{as}\::\:\mathrm{2}\pi\sqrt{\frac{\rho{L}}{\sigma{g}}}\:. \\ $$$${Isn}'{t}\:{data}\:{insufficient}\:? \\ $$

Commented by mr W last updated on 18/May/19

data is enough.  answer a is correct.

$${data}\:{is}\:{enough}. \\ $$$${answer}\:{a}\:{is}\:{correct}. \\ $$

Commented by mr W last updated on 18/May/19

for an object with uniform cross section,  to determine the frequency or time  period of its vertical oscillation in a liquid,  we only need to know how much of  it is immersed when it is floating in  the liquid.  f=(1/(2π))(√(g/L_w ))  T=2π(√(L_w /g))  with L_w =depth immersed in liquid

$${for}\:{an}\:{object}\:{with}\:{uniform}\:{cross}\:{section}, \\ $$$${to}\:{determine}\:{the}\:{frequency}\:{or}\:{time} \\ $$$${period}\:{of}\:{its}\:{vertical}\:{oscillation}\:{in}\:{a}\:{liquid}, \\ $$$${we}\:\boldsymbol{{only}}\:{need}\:{to}\:{know}\:{how}\:{much}\:{of} \\ $$$${it}\:{is}\:{immersed}\:{when}\:{it}\:{is}\:{floating}\:{in} \\ $$$${the}\:{liquid}. \\ $$$${f}=\frac{\mathrm{1}}{\mathrm{2}\pi}\sqrt{\frac{{g}}{{L}_{{w}} }} \\ $$$${T}=\mathrm{2}\pi\sqrt{\frac{{L}_{{w}} }{{g}}} \\ $$$${with}\:{L}_{{w}} ={depth}\:{immersed}\:{in}\:{liquid} \\ $$

Answered by mr W last updated on 18/May/19

let length of pole=L, cross section=A  length immersed in liquid when floating=L_w   density of pole=ρ  density of liquid=ρ_w   when floating⇒Aρ_w gL_w =AρgL⇒ρ_w L_w =ρL  T=2π(√((Lρ)/(ρ_w g)))=2π(√((ρ_w L_w )/(ρ_w g)))=2π(√(L_w /g))  =2π(√((0.8)/(9.81)))=((3.998π)/7)≈((4π)/7)  ⇒answer a

$${let}\:{length}\:{of}\:{pole}={L},\:{cross}\:{section}={A} \\ $$$${length}\:{immersed}\:{in}\:{liquid}\:{when}\:{floating}={L}_{{w}} \\ $$$${density}\:{of}\:{pole}=\rho \\ $$$${density}\:{of}\:{liquid}=\rho_{{w}} \\ $$$${when}\:{floating}\Rightarrow{A}\rho_{{w}} {gL}_{{w}} ={A}\rho{gL}\Rightarrow\rho_{{w}} {L}_{{w}} =\rho{L} \\ $$$${T}=\mathrm{2}\pi\sqrt{\frac{{L}\rho}{\rho_{{w}} {g}}}=\mathrm{2}\pi\sqrt{\frac{\rho_{{w}} {L}_{{w}} }{\rho_{{w}} {g}}}=\mathrm{2}\pi\sqrt{\frac{{L}_{{w}} }{{g}}} \\ $$$$=\mathrm{2}\pi\sqrt{\frac{\mathrm{0}.\mathrm{8}}{\mathrm{9}.\mathrm{81}}}=\frac{\mathrm{3}.\mathrm{998}\pi}{\mathrm{7}}\approx\frac{\mathrm{4}\pi}{\mathrm{7}} \\ $$$$\Rightarrow{answer}\:{a} \\ $$

Commented by rahul 19 last updated on 19/May/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Answered by tanmay last updated on 18/May/19

wt of pole=upthrust  mg=πR^2 xρ_(liquid) g  πR^2 hρ_(pole) g=πR^2 xρ_(liwuid) g  h=length of pole  x=submerged length of pole  when pushed further by △x  then upthrust>wt of pole  so restoring force  =πR^2 (x+△x)ρ_(liq) g−πR^2 hρ_(pole) g  =πR^2 xρ_(liq) g−πR^2 hρ_(pole) g+πR^2 .△x.ρ_(liq) g  =πR^2 .△x.ρ_(liq) g  accelaration(w^2 △x)  =((πR^2 .△x.ρ_(liq) g)/(πR^2 hρ_(pole) ))  =((ρ_(liq) ×g)/(ρ_(pole) ×h))×△x  so  w^2 △x=((ρ_(liq) g)/(ρ_(pole) h))×△x  ((2π)/T)=(√((ρ_(liq) g)/(ρ_(pole) h)))   T=2π×(√((ρ_(pole) /ρ_(liq) )×(h/g)))   in question no mention of value of  density pole(ρ_(pole) )  density liquid(ρ_(liquid))   length of pole(h)  now..from first eqn  mg=πR^2 xρ_(liq) g  πR^2 hρ_(pole) g=πR^2 xρ_(liq) g  hρ_(pole) =xρ_(liquid)   ((hρ_(pole) )/ρ_(liq) )=x  T=2π(√(x/g))   given x=80cm

$${wt}\:{of}\:{pole}={upthrust} \\ $$$${mg}=\pi{R}^{\mathrm{2}} {x}\rho_{{liquid}} {g} \\ $$$$\pi{R}^{\mathrm{2}} {h}\rho_{{pole}} {g}=\pi{R}^{\mathrm{2}} {x}\rho_{{liwuid}} {g} \\ $$$${h}={length}\:{of}\:{pole} \\ $$$${x}={submerged}\:{length}\:{of}\:{pole} \\ $$$${when}\:{pushed}\:{further}\:{by}\:\bigtriangleup{x} \\ $$$${then}\:{upthrust}>{wt}\:{of}\:{pole} \\ $$$${so}\:{restoring}\:{force} \\ $$$$=\pi{R}^{\mathrm{2}} \left({x}+\bigtriangleup{x}\right)\rho_{{liq}} {g}−\pi{R}^{\mathrm{2}} {h}\rho_{{pole}} {g} \\ $$$$=\pi{R}^{\mathrm{2}} {x}\rho_{{liq}} {g}−\pi{R}^{\mathrm{2}} {h}\rho_{{pole}} {g}+\pi{R}^{\mathrm{2}} .\bigtriangleup{x}.\rho_{{liq}} {g} \\ $$$$=\pi{R}^{\mathrm{2}} .\bigtriangleup{x}.\rho_{{liq}} {g} \\ $$$${accelaration}\left({w}^{\mathrm{2}} \bigtriangleup{x}\right) \\ $$$$=\frac{\pi{R}^{\mathrm{2}} .\bigtriangleup{x}.\rho_{{liq}} {g}}{\pi{R}^{\mathrm{2}} {h}\rho_{{pole}} } \\ $$$$=\frac{\rho_{{liq}} ×{g}}{\rho_{{pole}} ×{h}}×\bigtriangleup{x} \\ $$$${so}\:\:{w}^{\mathrm{2}} \bigtriangleup{x}=\frac{\rho_{{liq}} {g}}{\rho_{{pole}} {h}}×\bigtriangleup{x} \\ $$$$\frac{\mathrm{2}\pi}{{T}}=\sqrt{\frac{\rho_{{liq}} {g}}{\rho_{{pole}} {h}}}\: \\ $$$${T}=\mathrm{2}\pi×\sqrt{\frac{\rho_{{pole}} }{\rho_{{liq}} }×\frac{{h}}{{g}}}\: \\ $$$${in}\:{question}\:{no}\:{mention}\:{of}\:{value}\:{of} \\ $$$${density}\:{pole}\left(\rho_{{pole}} \right) \\ $$$${density}\:{liquid}\left(\rho_{\left.{liquid}\right)} \right. \\ $$$${length}\:{of}\:{pole}\left({h}\right) \\ $$$${now}..{from}\:{first}\:{eqn} \\ $$$${mg}=\pi{R}^{\mathrm{2}} {x}\rho_{{liq}} {g} \\ $$$$\pi{R}^{\mathrm{2}} {h}\rho_{{pole}} {g}=\pi{R}^{\mathrm{2}} {x}\rho_{{liq}} {g} \\ $$$${h}\rho_{{pole}} ={x}\rho_{{liquid}} \\ $$$$\frac{{h}\rho_{{pole}} }{\rho_{{liq}} }={x} \\ $$$${T}=\mathrm{2}\pi\sqrt{\frac{{x}}{{g}}}\: \\ $$$${given}\:{x}=\mathrm{80}{cm} \\ $$$$ \\ $$

Commented by rahul 19 last updated on 19/May/19

thank u sir.

$${thank}\:{u}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com