Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 60133 by ajfour last updated on 18/May/19

Commented by ajfour last updated on 18/May/19

Find angle α when m separates  from M. (m slides down  from top  of M , motion being initiated  somehow with a slight impulse).

FindangleαwhenmseparatesfromM.(mslidesdownfromtopofM,motionbeinginitiatedsomehowwithaslightimpulse).

Answered by mr W last updated on 22/May/19

position of M: x_1  (+ve to right)  velocity of M: v_1   acceleration of M: a  ω=(dθ/dt)  α=(dω/dt)=ω (dω/dθ)  position of m:  x_2 =x_1 +R sin θ  y_2 =R cos θ  v_(2x) =v_1 +R cos θ ω  v_(2y) =−R sin θ ω  a_(2x) =a_1 +R cos θ α−R sin θ ω^2   a_(2y) =−R sin θ α−R cos θ ω^2   ma_(2x) =N sin θ  ⇒m(a_1 +R cos θ α−R sin θ ω^2 )=N sin θ  ...(i)  ma_(2y) =N cos θ−mg  ⇒mR(sin θ α+cos θ ω^2 )=mg−N cos θ  ...(ii)  Ma_1 =−N sin θ  ...(iii)  ⇒Rω((dω/dθ) cos θ−ω sin θ)=(1+(m/M))[g−Rω(sin θ (dω/dθ)+ω cos θ )] tan θ   with μ=(m/M)  ⇒ω (dω/dθ)=((sin θ)/(1+μ sin^2  θ))[(1+μ)(g/R)−μω^2  cos θ]  ⇒(dω^2 /dθ)=((2 sin θ)/(1+μ sin^2  θ))[(1+μ)(g/R)−μω^2  cos θ]  with Φ=ω^2   ⇒(dΦ/dθ)+((μ sin 2θ)/(1+μ sin^2  θ))Φ=((2(1+μ)g)/R)×((sin θ)/(1+μ sin^2  θ))  ω=(√Φ)=f(θ)  ... but not possible to solve....    try ing an other way:  the CoM of both masses should be  unchanged in horizontal direction  during the motion, because no external  force is acting in horizontal direction.    −x_1 M=(x_1 +R sin θ)m  ⇒−v_1 M=(v_1 +R cos θ ω)m  ⇒v_1 =−((mR cos θ ω)/(m+M))=−((μR cos θ ω)/(1+μ))  ⇒a_1 =((μR)/(1+μ))(sin θ ω^2 −cos θ α)  (1/2)Mv_1 ^2 +(1/2)m(v_(2x) ^2 +v_(2y) ^2 )=mgR(1−cos θ)  v_1 ^2 +μ(v_(2x) ^2 +v_(2y) ^2 )=2gμR(1−cos θ)  (1+μ)v_1 ^2 +2μRω cos θ v_1 +μR^2 ω^2 =2gμR(1−cos θ)  −((μ^2 R^2  cos^2  θ ω^2 )/(1+μ))+μR^2 ω^2 =2gμR(1−cos θ)  (((1+μ sin^2  θ)/(1+μ)))Rω^2 =2g(1−cos θ)  ⇒ω^2 =((2g(1+μ)(1−cos θ))/(R(1+μ sin^2  θ)))  ⇒2ωα=((2g(1+μ))/R){((sin θ)/(1+μ sin^2  θ))−(((1−cos θ)2μ sin θ cos θ)/((1+μ sin^2  θ)^2 ))}ω  ⇒α=((g(1+μ) sin θ)/(R(1+μ sin^2  θ)^2 )){1+μ sin^2  θ−(1−cos θ)2μcos θ}  ⇒α=((g(1+μ) sin θ)/(R(1+μ sin^2  θ)^2 )){1+μ(1−cos θ)^2 }  N=−((Ma_1 )/(sin θ))=−((μRM)/((1+μ)sin θ))(sin θ ω^2 −cos θ α)  N=−((μRM)/((1+μ)sin θ)){((2g(1+μ)sin θ(1−cos θ))/(R(1+μ sin^2  θ)))−((g(1+μ) sin θ cos θ [1+μ(1−cos θ)^2 ])/(R(1+μ sin^2  θ)^2 ))}  N=−((μMg)/((1+μ sin^2  θ)^2 )){2(1−cos θ)(1+μ sin^2  θ)−cos θ [1+μ(1−cos θ)^2 ]}  N=−((μMg)/((1+μ sin^2  θ)^2 )){2−3cos θ+μ(2+cos θ)(1−cos θ)^2 }  ⇒(N/(Mg))=((μ[3cos θ−μ(2+cos θ)(1−cos θ)^2 −2])/((1+μ sin^2  θ)^2 ))  for N=0:  2−3cos θ+μ(2+cos θ)(1−cos θ)^2 =0  2−3cos θ+μ(2+cos θ)(1−2cos θ+cos^2  θ)=0  ⇒(μ/(1+μ)) cos^3  θ−3 cos θ+2=0  ⇒λ cos^3  α−3 cos α+2=0  ⇒α=cos^(−1) {((((√(1−λ))−1)/λ))^(1/3) −((((√(1−λ))+1)/λ))^(1/3) }

positionofM:x1(+vetoright)velocityofM:v1accelerationofM:aω=dθdtα=dωdt=ωdωdθpositionofm:x2=x1+Rsinθy2=Rcosθv2x=v1+Rcosθωv2y=Rsinθωa2x=a1+RcosθαRsinθω2a2y=RsinθαRcosθω2ma2x=Nsinθm(a1+RcosθαRsinθω2)=Nsinθ...(i)ma2y=NcosθmgmR(sinθα+cosθω2)=mgNcosθ...(ii)Ma1=Nsinθ...(iii)Rω(dωdθcosθωsinθ)=(1+mM)[gRω(sinθdωdθ+ωcosθ)]tanθwithμ=mMωdωdθ=sinθ1+μsin2θ[(1+μ)gRμω2cosθ]dω2dθ=2sinθ1+μsin2θ[(1+μ)gRμω2cosθ]withΦ=ω2dΦdθ+μsin2θ1+μsin2θΦ=2(1+μ)gR×sinθ1+μsin2θω=Φ=f(θ)...butnotpossibletosolve....tryinganotherway:theCoMofbothmassesshouldbeunchangedinhorizontaldirectionduringthemotion,becausenoexternalforceisactinginhorizontaldirection.x1M=(x1+Rsinθ)mv1M=(v1+Rcosθω)mv1=mRcosθωm+M=μRcosθω1+μa1=μR1+μ(sinθω2cosθα)12Mv12+12m(v2x2+v2y2)=mgR(1cosθ)v12+μ(v2x2+v2y2)=2gμR(1cosθ)(1+μ)v12+2μRωcosθv1+μR2ω2=2gμR(1cosθ)μ2R2cos2θω21+μ+μR2ω2=2gμR(1cosθ)(1+μsin2θ1+μ)Rω2=2g(1cosθ)ω2=2g(1+μ)(1cosθ)R(1+μsin2θ)2ωα=2g(1+μ)R{sinθ1+μsin2θ(1cosθ)2μsinθcosθ(1+μsin2θ)2}ωα=g(1+μ)sinθR(1+μsin2θ)2{1+μsin2θ(1cosθ)2μcosθ}α=g(1+μ)sinθR(1+μsin2θ)2{1+μ(1cosθ)2}N=Ma1sinθ=μRM(1+μ)sinθ(sinθω2cosθα)N=μRM(1+μ)sinθ{2g(1+μ)sinθ(1cosθ)R(1+μsin2θ)g(1+μ)sinθcosθ[1+μ(1cosθ)2]R(1+μsin2θ)2}N=μMg(1+μsin2θ)2{2(1cosθ)(1+μsin2θ)cosθ[1+μ(1cosθ)2]}N=μMg(1+μsin2θ)2{23cosθ+μ(2+cosθ)(1cosθ)2}NMg=μ[3cosθμ(2+cosθ)(1cosθ)22](1+μsin2θ)2forN=0:23cosθ+μ(2+cosθ)(1cosθ)2=023cosθ+μ(2+cosθ)(12cosθ+cos2θ)=0μ1+μcos3θ3cosθ+2=0λcos3α3cosα+2=0α=cos1{1λ1λ31λ+1λ3}

Commented by ajfour last updated on 19/May/19

thanks sir, excellent!  Your soution shall determine  all   quantities as a function of θ.

thankssir,excellent!Yoursoutionshalldetermineallquantitiesasafunctionofθ.

Commented by mr W last updated on 19/May/19

ω=(dθ/dt)=(√((2g(1+μ))/R))×(√((1−cos θ)/(1+μ sin^2  θ)))=κ(√((1−cos θ))/(1+μ sin^2  θ)))  κ∫_0 ^( t) dt=∫_0 ^( θ) (√((1+μ sin^2  θ)/(1−cos θ))) dθ  κt=∫_0 ^( θ) (√((1+μ sin^2  θ)/(1−cos θ))) dθ=.....  seems impossible to integrate...

ω=dθdt=2g(1+μ)R×1cosθ1+μsin2θ=κ1cosθ)1+μsin2θκ0tdt=0θ1+μsin2θ1cosθdθκt=0θ1+μsin2θ1cosθdθ=.....seemsimpossibletointegrate...

Commented by mr W last updated on 19/May/19

Commented by mr W last updated on 19/May/19

for m/M=1/3, at θ=46.0052°, block m  separates from block M.

form/M=1/3,atθ=46.0052°,blockmseparatesfromblockM.

Commented by mr W last updated on 19/May/19

we can determine where the small block  strikes the ground, but we can not  determine the time it takes.

wecandeterminewherethesmallblockstrikestheground,butwecannotdeterminethetimeittakes.

Answered by ajfour last updated on 18/May/19

Commented by ajfour last updated on 19/May/19

let u be velocity of block m  with respect to M.  Nsin θ=MA  mgcos θ−N−mAsin θ=((mu^2 )/R)        [when θ=α,   u^2 =Rgcos α   ...(I)          since then N=0, A=0 ]  (mgcos θ−((mu^2 )/R))sin θ=A(M+msin^2 θ)  (cos θ−(u^2 /(Rg)))sin θ=(A/g)(λ+sin^2 θ)  mgsin θ+mAcos θ=((mudu)/(Rdθ))  ....(II)  ⇒  (1/(Rg))((udu)/dθ)=sin θ+cos θsin θ{((cos θ−(u^2 /(Rg)))/(λ+sin^2 θ))}            (where    λ=(M/m))     let  (u^2 /(2Rg))=s     (ds/dθ)=sin θ+((cos θsin θ)/(λ+sin^2 θ))(cos θ−s)  ....

letubevelocityofblockmwithrespecttoM.Nsinθ=MAmgcosθNmAsinθ=mu2R[whenθ=α,u2=Rgcosα...(I)sincethenN=0,A=0](mgcosθmu2R)sinθ=A(M+msin2θ)(cosθu2Rg)sinθ=Ag(λ+sin2θ)mgsinθ+mAcosθ=muduRdθ....(II)1Rgududθ=sinθ+cosθsinθ{cosθu2Rgλ+sin2θ}(whereλ=Mm)letu22Rg=sdsdθ=sinθ+cosθsinθλ+sin2θ(cosθs)....

Commented by ajfour last updated on 19/May/19

mgR(1−cos α)=(1/2)MV^2 +(1/2)m[(ucos α−V)^2 +u^2 sin^2 α]               (energy conservation)  mucos α = (M+m)V                (momentum conservation                  along horizontal)  u^2 =Rgcos α  ⇒ 2mgR(1−cos α)=M((m/(M+m)))^2 (Rgcos α)cos^2 α                      +m[Rgcos^3 α(1−(m/(M+m)))^2 +Rgcos αsin^2 α]  ⇒   2(1−cos α)=((λcos^3 α)/((λ+1)^2 ))+((λ/(λ+1)))^2 cos^3 α                                                +cos αsin^2 α  let  cos α=x    3x−(1/(λ+1))x^3 −2=0   say if λ>>1  ⇒ x=cos α = (2/3) ,  α=cos^(−1) (2/3) ≈48.19°  if  M=3m  ⇒ λ=3    3x−(x^3 /4)−2=0  or     cos^3 α−12cos α+8 =0       ⇒    α≈ 46.005° .

mgR(1cosα)=12MV2+12m[(ucosαV)2+u2sin2α](energyconservation)mucosα=(M+m)V(momentumconservationalonghorizontal)u2=Rgcosα2mgR(1cosα)=M(mM+m)2(Rgcosα)cos2α+m[Rgcos3α(1mM+m)2+Rgcosαsin2α]2(1cosα)=λcos3α(λ+1)2+(λλ+1)2cos3α+cosαsin2αletcosα=x3x1λ+1x32=0sayifλ>>1x=cosα=23,α=cos12348.19°ifM=3mλ=33xx342=0orcos3α12cosα+8=0α46.005°.

Commented by mr W last updated on 19/May/19

your method is absolutely correct sir!

yourmethodisabsolutelycorrectsir!

Commented by ajfour last updated on 19/May/19

thank you Sir!

thankyouSir!

Commented by mr W last updated on 19/May/19

you use directly the motion eqn. in  radial and tangential directions,   while i usually derive the velocity  and acceleration from the x− and  y−coordinates which is mostly  lengthy and complicated. your  method is thus shorter and better.

youusedirectlythemotioneqn.inradialandtangentialdirections,whileiusuallyderivethevelocityandaccelerationfromthexandycoordinateswhichismostlylengthyandcomplicated.yourmethodisthusshorterandbetter.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com