All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 60155 by Tawa1 last updated on 18/May/19
Showthat:12+cos(x)+cos(2x)+...+cos(nx)=sin(n+12)x2sin(12)xByprincipleofmathematicalinduction
Answered by Kunal12588 last updated on 18/May/19
P(n):12+cos(x)+cos(2x)+...+cos(nx)=sin(n+12)x2sin(12)xP(1):LHS=12+cos(x)=1+2cos(x)2=1+2(1−2sin2x2)2=3−4sin2x22RHS=sin(1+12)x2sin(12)x=3sin(12)x−4sin3(12)x2sin(12)x=3−4sin2x22⇒LHS=RHS∴P(1)istrueLetP(k)betruefork∈NP(k)12+cos(x)+cos(2x)+...+cos(kx)=sin(k+12)x2sin(12)x(1)NowP(k+1):12+cos(x)+cos(2x)+...+cos(kx)+cos((k+1)x)=sin(k+12)x2sin(12)x+cos((k+1)x)[from1]=sin(k+12)x+2sin(12)xcos((k+1)x)2sin(12)x=sin(k+12)x+sin(k+1+12)x+sin(12−k−1)x2sin(12)x=sin(k+12)x+sin(k+1+12)x−sin(k+12)x2sin(12)x=sin(k+1+12)x2sin(12)x∴P(n)istruefromPrincipleofmathematicalinduction
Commented by Tawa1 last updated on 18/May/19
Godblessyousir
Thanksforyourtime
Terms of Service
Privacy Policy
Contact: info@tinkutara.com