Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 60175 by MJS last updated on 18/May/19

solving u^v =w with u, v, w ∈C  finding all possible solutions  I tested this with several values and found  no mistake. please review and comment.  I hope this will help at least some of you.

$$\mathrm{solving}\:{u}^{{v}} ={w}\:\mathrm{with}\:{u},\:{v},\:{w}\:\in\mathbb{C} \\ $$$$\mathrm{finding}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{solutions} \\ $$$$\mathrm{I}\:\mathrm{tested}\:\mathrm{this}\:\mathrm{with}\:\mathrm{several}\:\mathrm{values}\:\mathrm{and}\:\mathrm{found} \\ $$$$\mathrm{no}\:\mathrm{mistake}.\:\mathrm{please}\:\mathrm{review}\:\mathrm{and}\:\mathrm{comment}. \\ $$$$\mathrm{I}\:\mathrm{hope}\:\mathrm{this}\:\mathrm{will}\:\mathrm{help}\:\mathrm{at}\:\mathrm{least}\:\mathrm{some}\:\mathrm{of}\:\mathrm{you}. \\ $$

Commented by MJS last updated on 18/May/19

Commented by MJS last updated on 18/May/19

the answers to my former question 60039:  z^i =(1/2)−(1/2)i  p=0; q=1; a=((√2)/2); α=−(π/4)  p=0 ⇒ r=e^(π(−(1/4)+2n))  with n∈Z  θ=(1/2)ln 2  z_n =e^(π(−(1/4)+2n)) e^(i((ln 2)/2)) =e^(π(−(1/4)+2n)) (cos ((ln 2)/2) +i sin ((ln 2)/2))  z_0 ≈.428829+.154872i  z_(−1) ≈.000800814+.000289214i  z_1 ≈229.634+82.9325i    z^(1−i) =1+i  p=1; q=−1; a=(√2); α=(π/4)  −(9/8)−((ln 2)/(4π))≤n<(7/8)−((ln 2)/(4π))  −1.18016≤n<.819841  ⇒ n∈{−1, 0}  r=2^(1/4) e^(−π(n+(1/8))) ; r_(−1) =2^(1/4) e^((7π)/8) ; r_0 =2^(1/4) e^(−(π/8))   θ=πn+(π/8)+((ln 2)/4); θ_(−1) =((ln 2)/4)−((7π)/8); θ_0 =((ln 2)/4)+(π/8)  z_(−1) ≈−15.6841−9.96443i  z_0 ≈.677773+.430602i

$$\mathrm{the}\:\mathrm{answers}\:\mathrm{to}\:\mathrm{my}\:\mathrm{former}\:\mathrm{question}\:\mathrm{60039}: \\ $$$${z}^{\mathrm{i}} =\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{i} \\ $$$${p}=\mathrm{0};\:{q}=\mathrm{1};\:{a}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}};\:\alpha=−\frac{\pi}{\mathrm{4}} \\ $$$${p}=\mathrm{0}\:\Rightarrow\:{r}=\mathrm{e}^{\pi\left(−\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{2}{n}\right)} \:\mathrm{with}\:{n}\in\mathbb{Z} \\ $$$$\theta=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$${z}_{{n}} =\mathrm{e}^{\pi\left(−\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{2}{n}\right)} \mathrm{e}^{\mathrm{i}\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}} =\mathrm{e}^{\pi\left(−\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{2}{n}\right)} \left(\mathrm{cos}\:\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}\:+\mathrm{i}\:\mathrm{sin}\:\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}\right) \\ $$$${z}_{\mathrm{0}} \approx.\mathrm{428829}+.\mathrm{154872i} \\ $$$${z}_{−\mathrm{1}} \approx.\mathrm{000800814}+.\mathrm{000289214i} \\ $$$${z}_{\mathrm{1}} \approx\mathrm{229}.\mathrm{634}+\mathrm{82}.\mathrm{9325i} \\ $$$$ \\ $$$${z}^{\mathrm{1}−\mathrm{i}} =\mathrm{1}+\mathrm{i} \\ $$$${p}=\mathrm{1};\:{q}=−\mathrm{1};\:{a}=\sqrt{\mathrm{2}};\:\alpha=\frac{\pi}{\mathrm{4}} \\ $$$$−\frac{\mathrm{9}}{\mathrm{8}}−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{4}\pi}\leqslant{n}<\frac{\mathrm{7}}{\mathrm{8}}−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{4}\pi} \\ $$$$−\mathrm{1}.\mathrm{18016}\leqslant{n}<.\mathrm{819841} \\ $$$$\Rightarrow\:{n}\in\left\{−\mathrm{1},\:\mathrm{0}\right\} \\ $$$${r}=\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \mathrm{e}^{−\pi\left({n}+\frac{\mathrm{1}}{\mathrm{8}}\right)} ;\:{r}_{−\mathrm{1}} =\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \mathrm{e}^{\frac{\mathrm{7}\pi}{\mathrm{8}}} ;\:{r}_{\mathrm{0}} =\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \mathrm{e}^{−\frac{\pi}{\mathrm{8}}} \\ $$$$\theta=\pi{n}+\frac{\pi}{\mathrm{8}}+\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{4}};\:\theta_{−\mathrm{1}} =\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{4}}−\frac{\mathrm{7}\pi}{\mathrm{8}};\:\theta_{\mathrm{0}} =\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{4}}+\frac{\pi}{\mathrm{8}} \\ $$$${z}_{−\mathrm{1}} \approx−\mathrm{15}.\mathrm{6841}−\mathrm{9}.\mathrm{96443i} \\ $$$${z}_{\mathrm{0}} \approx.\mathrm{677773}+.\mathrm{430602i} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com