Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 60212 by peter frank last updated on 18/May/19

Commented by maxmathsup by imad last updated on 19/May/19

we have 3x^3 −x^2  +2x−4 =3x^3 −3x^2  +2x^2  +2x−4  =3x^2 (x−1) +2x^2 −2x +4x−4 =3x^2 (x−1) +2x(x−1)+4(x−1)  =(x−1)(3x^2 +2x +4)  also   x^2 −3x +2 =x^2 −x −2x+2 =x(x−1)−2(x−1) =(x−1)(x−2) ⇒  I =∫_0 ^1   (((x−1)(3x^2  +2x+4))/((√(1−x))(√(2−x)))) dx =− ∫_0 ^1 (((√(1−x))(3x^2  +2x+4))/(√(2−x))) dx  =−∫_0 ^1 (√((1−x)/(2−x)))(3x^2  +2x +4)dx   changement (√((1−x)/(2−x)))=t give  ((1−x)/(2−x)) =t^2  ⇒1−x =2t^2 −t^2 x ⇒1−2t^2 =(1−t^2 )x ⇒x =((1−2t^2 )/(1−t^2 )) ⇒  dx/dt =((−4t(1−t^2 )−(1−2t^2 )(−2t))/((1−t^2 )^2 )) =((−4t+4t^3 +2t−4t^3 )/((1−t^2 )^2 )) =((−2t)/((1−t^2 )^2 )) ⇒  I =−∫_(1/(√2)) ^0  t{ 3(((1−2t^2 )/(1−t^2 )))^2  +2((1−2t^2 )/(1−t^2 )) +4}(((−2t)/((1−t^2 )^2 )))dt  I =∫_0 ^(1/(√2)) −2t^2 {   ((3(1−2t^2 )^2  +2(1−2t^2 )(1−t^2 ) +4(1−t^2 )^2 )/((1−t^2 )^4 ))}dt  I =−2 ∫_0 ^(1/(√2)) (t^2 /((1−t^2 )^4 )){  3(4t^4 −4t^2  +1)+2(1−t^2 −2t^2  +2t^4 ) +4(t^4 −2t^2  +1)}dt  =−2 ∫_0 ^(1/(√2))     (t^2 /((1−t^2 )^4 )){12t^4  −12t^2  +3 +2 −6t^2  +4t^4  +4t^4  −8t^2  +4}dt  =−2 ∫_0 ^(1/(√2))    (t^2 /((1−t^2 )^4 )){ 20t^4  −26t^2   +9} dt  =−2 ∫_0 ^(1/(√2))  ((20t^6  −26t^4  +9t^2 )/((1−t^2 )^4 )) dt  let decompose   F(t) =((20t^6 −26 t^4  +9t^2 )/((t^2 −1)^4 )) ⇒F(t) =(a/(t−1)) +(b/((t−1)^2 )) +(c/((t−1)^3 )) +(d/((t−1)^4 )) +(e/(t+1))  +(f/((t+1)^2 )) +(g/((t+1)^3 )) +(h/((t+1)^4 ))  F(−t)=F(t) ⇒((−a)/(t+1)) +(b/((t+1)^2 )) −(c/((t+1)^3 )) +(d/((t+1)^4 )) −(e/(t−1)) +(f/((t−1)^2 )) −(g/((t−1)^3 ))  +(h/((t−1)^4 )) =F(t) ⇒−a =e ,b=f , −c=g  ,d =h  ,....be continued...

wehave3x3x2+2x4=3x33x2+2x2+2x4=3x2(x1)+2x22x+4x4=3x2(x1)+2x(x1)+4(x1)=(x1)(3x2+2x+4)alsox23x+2=x2x2x+2=x(x1)2(x1)=(x1)(x2)I=01(x1)(3x2+2x+4)1x2xdx=011x(3x2+2x+4)2xdx=011x2x(3x2+2x+4)dxchangement1x2x=tgive1x2x=t21x=2t2t2x12t2=(1t2)xx=12t21t2dx/dt=4t(1t2)(12t2)(2t)(1t2)2=4t+4t3+2t4t3(1t2)2=2t(1t2)2I=120t{3(12t21t2)2+212t21t2+4}(2t(1t2)2)dtI=0122t2{3(12t2)2+2(12t2)(1t2)+4(1t2)2(1t2)4}dtI=2012t2(1t2)4{3(4t44t2+1)+2(1t22t2+2t4)+4(t42t2+1)}dt=2012t2(1t2)4{12t412t2+3+26t2+4t4+4t48t2+4}dt=2012t2(1t2)4{20t426t2+9}dt=201220t626t4+9t2(1t2)4dtletdecomposeF(t)=20t626t4+9t2(t21)4F(t)=at1+b(t1)2+c(t1)3+d(t1)4+et+1+f(t+1)2+g(t+1)3+h(t+1)4F(t)=F(t)at+1+b(t+1)2c(t+1)3+d(t+1)4et1+f(t1)2g(t1)3+h(t1)4=F(t)a=e,b=f,c=g,d=h,....becontinued...

Answered by MJS last updated on 19/May/19

∫((3x^3 −x^2 +2x−4)/(√(x^2 −3x+2)))dx=       [t=(√(x^2 −3x+2)) → dx=((2tdt)/(√(4t^2 +1)))]  =∫(((25t^2 )/(√(4t^2 +1)))+((20)/(√(4t^2 +1)))+3t^2 +20)dt=  =∫[(((25(8t^2 +1))/(8(√(4t^2 +1))))−((25)/(8(√(4t^2 +1)))))+((20)/(√(4t^2 +1)))+3t^2 +20]dt=  =∫(((25(8t^2 +1))/(8(√(4t^2 +1))))+((135)/(8(√(4t^2 +1))))+3t^2 +20)dt    ((25)/8)∫((8t^2 +1)/(√(4t^2 +1)))dt=       [u=arcsinh 2t → dt=((√(4t^2 +1))/2)du]  =((25)/(16))∫cosh 2u du=((25)/(32))sinh 2u =((25)/8)t(√(4t^2 +1))=  =((25)/8)(2x−3)(√(x^2 −3x+2))    ((135)/8)∫(dt/(√(4t^2 +1)))=       [u=arcsinh 2t → dt=((√(4t^2 +1))/2)du]  =((135)/(16))∫du=((135)/(16))u=((135)/(16))arcsinh 2t =  =((135)/(16))arcsinh 2(√(x^2 −3x+2))    ∫(3t^2 +20)dt=t^3 +20t=(x^3 −3x+22)(√(x^2 −3x+2))    ∫((3x^3 −x^2 +2x−4)/(√(x^2 −3x+2)))dx=  =(1/8)(8x^2 +26x+101)(√(x^2 −3x+2))+((135)/(16))arcsinh 2(√(x^2 −3x+2)) +C

3x3x2+2x4x23x+2dx=[t=x23x+2dx=2tdt4t2+1]=(25t24t2+1+204t2+1+3t2+20)dt==[(25(8t2+1)84t2+12584t2+1)+204t2+1+3t2+20]dt==(25(8t2+1)84t2+1+13584t2+1+3t2+20)dt2588t2+14t2+1dt=[u=arcsinh2tdt=4t2+12du]=2516cosh2udu=2532sinh2u=258t4t2+1==258(2x3)x23x+21358dt4t2+1=[u=arcsinh2tdt=4t2+12du]=13516du=13516u=13516arcsinh2t==13516arcsinh2x23x+2(3t2+20)dt=t3+20t=(x33x+22)x23x+23x3x2+2x4x23x+2dx==18(8x2+26x+101)x23x+2+13516arcsinh2x23x+2+C

Commented by peter frank last updated on 19/May/19

thanks.sorry sir explain  third line

thanks.sorrysirexplainthirdline

Commented by MJS last updated on 19/May/19

I finished it

Ifinishedit

Commented by maxmathsup by imad last updated on 19/May/19

thank you sir for this hardwork.

thankyousirforthishardwork.

Commented by peter frank last updated on 24/May/19

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com