Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 60219 by ANTARES VY last updated on 19/May/19

C=((2𝛑𝛜𝛜_0 L)/(ln((R_2 /R_1 )))).  prove.

C=2πεε0Lln(R2R1).prove.

Commented by ANTARES VY last updated on 19/May/19

Answered by ajfour last updated on 19/May/19

C=(q/V) = (q/(∫_R_1  ^(  R_2 ) E.dr))  from Gauss′ law  E=((q/L)/(2πεε_0 r))  so    C=(q/V)= (q/(∫_R_1  ^(  R_2 ) (((q/L))/(2πεε_0 r))dr))        ⇒  C=((2πεε_0 L)/(∫_R_1  ^(  R_2 )  (dr/r))) =((2πεε_0 L)/(ln ((R_2 /R_1 )))) .

C=qV=qR1R2E.drfromGausslawE=q/L2πϵϵ0rsoC=qV=qR1R2(q/L)2πϵϵ0rdrC=2πϵϵ0LR1R2drr=2πϵϵ0Lln(R2R1).

Commented by ANTARES VY last updated on 19/May/19

?

?

Commented by ajfour last updated on 19/May/19

Calculate Electric field from  Gauss′ law, rest i have explained  how to use that result.

CalculateElectricfieldfromGausslaw,restihaveexplainedhowtousethatresult.

Commented by ANTARES VY last updated on 19/May/19

E=((q/L)/(2𝛑𝛜𝛜_0 r))   (q/L)=?.   (1/(2𝛑𝛜𝛜_0 r))=((2k)/(𝛜r))=(2/C)    C=((𝛜R)/k).

E=qL2πεε0rqL=?.12πεε0r=2kεr=2CC=εRk.

Commented by ajfour last updated on 19/May/19

Commented by ajfour last updated on 19/May/19

According to Gauss′ law      flux of field through a Gaussian  surface = (1/ε_0 )(charge within Gaussian surface)  assuming charge q and −q on capacitor  plates    εE(2πrL)=(1/ε_0 )(q)  ⇒  E=((q/L)/(2πεε_0 r)) .

AccordingtoGausslawfluxoffieldthroughaGaussiansurface=1ϵ0(chargewithinGaussiansurface)assumingchargeqandqoncapacitorplatesϵE(2πrL)=1ϵ0(q)E=q/L2πϵϵ0r.

Commented by ANTARES VY last updated on 19/May/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com