All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 60263 by maxmathsup by imad last updated on 19/May/19
letUn=∫0∞e−n[x2]x2+3dx1)calculateUnintermsofn2)findlimn→+∞nUn3)determinenatureoftheserieΣUn
Commented by maxmathsup by imad last updated on 20/May/19
1)wehave2Un=∫−∞+∞e−n[x2]x2+3dxletφ(z)=e−n[z2]z2+3wehaveφ(z)=e−n[z2](z−i3)(z+i3)sothepolesofφare+−i3residustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,i33Res(φ,i)=limz→i3(z−i3)φ(z)=limz→ie−n[z2]z+i3=e−n[−3]2i3=e3n2i3⇒∫−∞+∞φ(z)dz=2iπe3n2i3=π3e3n⇒Un=π23e3n.2)limn→+∞nUn=+∞3)itsclearthatΣUndiverges..
Terms of Service
Privacy Policy
Contact: info@tinkutara.com