All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 60318 by Sardor2211 last updated on 19/May/19
Commented by kaivan.ahmadi last updated on 20/May/19
wefindI=∫x2arctgxdxthenmultiply4u=arctgx⇒du=dx1+x2dv=x2dx⇒v=x33I=uv−∫vdu=13x3arctgx−13∫x31+x2dx=13x3arctgx−13∫x3+x−x1+x2dx=13x3arctgx−13∫x3+x1+x2dx+13∫x1+x2dx=13x3arctgx−13∫xdx+13∫x1+x2dx=13x3arctvx−16x2+16ln(1+x2)+C
Commented by maxmathsup by imad last updated on 20/May/19
letA=∫4x2arctan(x)dx⇒A=4∫x2arctanxdxbypartsu′=x2andv=arctanx⇒A=x33arctanx−∫x33dx1+x2=x33arctan(x)−13∫x31+x2dx∫x31+x2dx=∫x(1+x2)−x1+x2dx=∫xdx−∫x1+x2dx=x22−12ln(1+x2)+c⇒A=x33arctan(x)−16x2+16ln(1+x2)+c.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com