All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 60320 by Sardor2211 last updated on 19/May/19
Commented by maxmathsup by imad last updated on 20/May/19
letI=∫x3−5x2+5x+23(x2−1)(x−5)dxletdecomposeF(x)=x3−5x2+5x+23(x2−1)(x−5)F(x)=x3−5x2+5x+23(x−1)(x+1)(x−5)=1+ax−1+bx+1+cx−5a=limx→1(x−1)F(x)=1−5+5+232(−4)=24−8=−3b=limx→−1(x+1)F(x)=−1−5−5+23(−2)(−6)=1212=1c=limx→5(x−5)F(x)=53−53+25+234.6=4824=2⇒F(x)=1−3x−1+1x+1+2x−5⇒I=∫F(x)dx⇒I=x−3ln∣x−1∣+ln∣x+1∣+2ln∣x−5∣+C.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com