Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 60322 by Sardor2211 last updated on 19/May/19

Commented by Mr X pcx last updated on 19/May/19

(e)⇔xy^(′′)  +y^′  =x^3    let y^′ =z ⇒  xz^′  +z =x^3   (he)⇒xz^′  +z =0 ⇒(z^′ /z) =−(1/x) ⇒  ln∣z∣ =−ln∣x∣ +k ⇒z=(c/(∣x∣))  on ]0,+∞[ ⇒z=(C/x)     mvc method give  z^′  =(C^′ /x) −(C/x^2 )  xz^′  +z =x^3  ⇒C^′  −(C/x) +(C/x) =x^3  ⇒  C^′ =x^3  ⇒C =(x^4 /4) +k ⇒ z(x)=(x^3 /4) +(k/x)  we have y^′ =z ⇒ y =∫ zdx  =∫( (x^3 /4) +(k/x))dx +λ  y=(1/(16))x^4   +kln∣x∣ +λx .

$$\left({e}\right)\Leftrightarrow{xy}^{''} \:+{y}^{'} \:={x}^{\mathrm{3}} \:\:\:{let}\:{y}^{'} ={z}\:\Rightarrow \\ $$$${xz}^{'} \:+{z}\:={x}^{\mathrm{3}} \\ $$$$\left({he}\right)\Rightarrow{xz}^{'} \:+{z}\:=\mathrm{0}\:\Rightarrow\frac{{z}^{'} }{{z}}\:=−\frac{\mathrm{1}}{{x}}\:\Rightarrow \\ $$$${ln}\mid{z}\mid\:=−{ln}\mid{x}\mid\:+{k}\:\Rightarrow{z}=\frac{{c}}{\mid{x}\mid} \\ $$$$\left.{on}\:\right]\mathrm{0},+\infty\left[\:\Rightarrow{z}=\frac{{C}}{{x}}\:\:\:\:\:{mvc}\:{method}\:{give}\right. \\ $$$${z}^{'} \:=\frac{{C}^{'} }{{x}}\:−\frac{{C}}{{x}^{\mathrm{2}} } \\ $$$${xz}^{'} \:+{z}\:={x}^{\mathrm{3}} \:\Rightarrow{C}^{'} \:−\frac{{C}}{{x}}\:+\frac{{C}}{{x}}\:={x}^{\mathrm{3}} \:\Rightarrow \\ $$$${C}^{'} ={x}^{\mathrm{3}} \:\Rightarrow{C}\:=\frac{{x}^{\mathrm{4}} }{\mathrm{4}}\:+{k}\:\Rightarrow\:{z}\left({x}\right)=\frac{{x}^{\mathrm{3}} }{\mathrm{4}}\:+\frac{{k}}{{x}} \\ $$$${we}\:{have}\:{y}^{'} ={z}\:\Rightarrow\:{y}\:=\int\:{zdx} \\ $$$$=\int\left(\:\frac{{x}^{\mathrm{3}} }{\mathrm{4}}\:+\frac{{k}}{{x}}\right){dx}\:+\lambda \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{16}}{x}^{\mathrm{4}} \:\:+{kln}\mid{x}\mid\:+\lambda{x}\:. \\ $$$$ \\ $$

Commented by Mr X pcx last updated on 19/May/19

y=(1/(16))x^4  +kln∣x∣ +λ .

$${y}=\frac{\mathrm{1}}{\mathrm{16}}{x}^{\mathrm{4}} \:+{kln}\mid{x}\mid\:+\lambda\:. \\ $$

Answered by tanmay last updated on 19/May/19

(dy/dx)=p  (d^2 y/dx^2 )=(dp/dx)  (dp/dx)+(p/x)=x^2   intregating factor e^(∫(dx/x)) =e^(lnx) =x  x(dp/dx)+p=x^3   ((xdp+pdx)/dx)=x^3   d(xp)=x^3 dx  ∫d(xp)=∫x^3 dx  xp=(x^4 /4)+c  p=(x^3 /4)+(c/x)  (dy/dx)=(x^3 /4)+(c/x)  ∫dy=∫(x^3 /4)dx+∫(c/x)dx  y=(x^4 /(16))+clnx+c_1

$$\frac{{dy}}{{dx}}={p} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{{dp}}{{dx}} \\ $$$$\frac{{dp}}{{dx}}+\frac{{p}}{{x}}={x}^{\mathrm{2}} \\ $$$${intregating}\:{factor}\:{e}^{\int\frac{{dx}}{{x}}} ={e}^{{lnx}} ={x} \\ $$$${x}\frac{{dp}}{{dx}}+{p}={x}^{\mathrm{3}} \\ $$$$\frac{{xdp}+{pdx}}{{dx}}={x}^{\mathrm{3}} \\ $$$${d}\left({xp}\right)={x}^{\mathrm{3}} {dx} \\ $$$$\int{d}\left({xp}\right)=\int{x}^{\mathrm{3}} {dx} \\ $$$${xp}=\frac{{x}^{\mathrm{4}} }{\mathrm{4}}+{c} \\ $$$${p}=\frac{{x}^{\mathrm{3}} }{\mathrm{4}}+\frac{{c}}{{x}} \\ $$$$\frac{{dy}}{{dx}}=\frac{{x}^{\mathrm{3}} }{\mathrm{4}}+\frac{{c}}{{x}} \\ $$$$\int{dy}=\int\frac{{x}^{\mathrm{3}} }{\mathrm{4}}{dx}+\int\frac{{c}}{{x}}{dx} \\ $$$${y}=\frac{{x}^{\mathrm{4}} }{\mathrm{16}}+{clnx}+{c}_{\mathrm{1}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com