Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 60386 by Kunal12588 last updated on 20/May/19

lim_(x→0) ((sin(πcos^2 x))/x^2 )  why it can not be solved this way  lim_(x→0)  ((sin(πcos^2 x))/x^2 )  =lim_(x→0)  ((sin(πcos^2 x))/(πcos^2 x))×lim_(x→0)  ((πcos^2 x)/x^2 )  =π × lim_(x→0) ((cos^2 x)/x^2 )  but it is not equal to π

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{sin}\left(\pi{cos}^{\mathrm{2}} {x}\right)}{{x}^{\mathrm{2}} } \\ $$$${why}\:{it}\:{can}\:{not}\:{be}\:{solved}\:{this}\:{way} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{{sin}\left(\pi{cos}^{\mathrm{2}} {x}\right)}{{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{{sin}\left(\pi{cos}^{\mathrm{2}} {x}\right)}{\pi{cos}^{\mathrm{2}} {x}}×\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{\pi{cos}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} } \\ $$$$=\pi\:×\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{cos}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} } \\ $$$${but}\:{it}\:{is}\:{not}\:{equal}\:{to}\:\pi \\ $$

Commented by mr W last updated on 20/May/19

lim_(x→0)  ((sin(πcos^2 x))/(πcos^2 x))=((sin π)/(π×1))=(0/π)=0≠π  lim_(x→0)  ((πcos^2 x)/x^2 )=(π/0)→∞

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{{sin}\left(\pi{cos}^{\mathrm{2}} {x}\right)}{\pi{cos}^{\mathrm{2}} {x}}=\frac{\mathrm{sin}\:\pi}{\pi×\mathrm{1}}=\frac{\mathrm{0}}{\pi}=\mathrm{0}\neq\pi \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\pi{cos}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }=\frac{\pi}{\mathrm{0}}\rightarrow\infty \\ $$

Commented by mr W last updated on 20/May/19

or  lim_(x→0) ((sin(πcos^2 x))/x^2 )    (→(0/0))  =lim_(x→0) ((cos (πcos^2 x)(− π 2 cos x sin x))/(2x))  =lim_(x→0) (((−1)(− π) sin x)/x)  =π lim_(x→0) ((sin x)/x)  =π

$${or} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{sin}\left(\pi{cos}^{\mathrm{2}} {x}\right)}{{x}^{\mathrm{2}} }\:\:\:\:\left(\rightarrow\frac{\mathrm{0}}{\mathrm{0}}\right) \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{cos}\:\left(\pi{cos}^{\mathrm{2}} {x}\right)\left(−\:\pi\:\mathrm{2}\:\mathrm{cos}\:{x}\:\mathrm{sin}\:{x}\right)}{\mathrm{2}{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\left(−\mathrm{1}\right)\left(−\:\pi\right)\:\mathrm{sin}\:{x}}{{x}} \\ $$$$=\pi\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{sin}\:{x}}{{x}} \\ $$$$=\pi \\ $$

Commented by prakash jain last updated on 20/May/19

Limit of product of two function = product of limits this is only true if both limit exist and finite.

Commented by Mr X pcx last updated on 20/May/19

another way  we hsve cosx∼1−(x^2 /2) ⇒  cos^2 x ∼1−x^2  +(x^4 /4) ∼1−x^2  +o(x^4 ) ⇒  πcos^2 x∼π−π x^2  ⇒((sin(πcos^2 x))/x^2 )  ∼ ((sin(πx^2 ))/x^2 ) ∼((πx^2 )/x^2 ) (=π) ⇒  lim_(x−0) ((sin(π cos^2 x))/x^2 ) =π .

$${another}\:{way}\:\:{we}\:{hsve}\:{cosx}\sim\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow \\ $$$${cos}^{\mathrm{2}} {x}\:\sim\mathrm{1}−{x}^{\mathrm{2}} \:+\frac{{x}^{\mathrm{4}} }{\mathrm{4}}\:\sim\mathrm{1}−{x}^{\mathrm{2}} \:+{o}\left({x}^{\mathrm{4}} \right)\:\Rightarrow \\ $$$$\pi{cos}^{\mathrm{2}} {x}\sim\pi−\pi\:{x}^{\mathrm{2}} \:\Rightarrow\frac{{sin}\left(\pi{cos}^{\mathrm{2}} {x}\right)}{{x}^{\mathrm{2}} } \\ $$$$\sim\:\frac{{sin}\left(\pi{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }\:\sim\frac{\pi{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\:\left(=\pi\right)\:\Rightarrow \\ $$$${lim}_{{x}−\mathrm{0}} \frac{{sin}\left(\pi\:{cos}^{\mathrm{2}} {x}\right)}{\overset{\mathrm{2}} {{x}}}\:=\pi\:. \\ $$

Answered by mr W last updated on 20/May/19

lim_(x→0) ((sin(πcos^2 x))/x^2 )  =lim_(x→0) ((sin(π−π sin^2  x))/x^2 )  =lim_(x→0) ((sin(π sin^2  x))/x^2 )  =lim_(x→0) {((sin(π sin^2  x))/(π sin^2  x))×π×(((sin x)/x))^2 }  =1×π×1^2   =π

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{sin}\left(\pi{cos}^{\mathrm{2}} {x}\right)}{{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{sin}\left(\pi−\pi\:\mathrm{sin}^{\mathrm{2}} \:{x}\right)}{{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{sin}\left(\pi\:\mathrm{sin}^{\mathrm{2}} \:{x}\right)}{{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\left\{\frac{{sin}\left(\pi\:\mathrm{sin}^{\mathrm{2}} \:{x}\right)}{\pi\:\mathrm{sin}^{\mathrm{2}} \:{x}}×\pi×\left(\frac{\mathrm{sin}\:{x}}{{x}}\right)^{\mathrm{2}} \right\} \\ $$$$=\mathrm{1}×\pi×\mathrm{1}^{\mathrm{2}} \\ $$$$=\pi \\ $$

Commented by Prithwish sen last updated on 20/May/19

Sir I think it will be   lim_(x→0) ((sin(π−πcos^2 x))/x^2 ) (2^(nd)  line)  please check.

$$\mathrm{Sir}\:\mathrm{I}\:\mathrm{think}\:\mathrm{it}\:\mathrm{will}\:\mathrm{be}\: \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \frac{\mathrm{sin}\left(\pi−\pi\mathrm{cos}^{\mathrm{2}} \mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} }\:\left(\mathrm{2}^{\mathrm{nd}} \:\mathrm{line}\right) \\ $$$$\mathrm{please}\:\mathrm{check}. \\ $$

Commented by Kunal12588 last updated on 20/May/19

yes sir i know the answer this way but  why it can not be solved the way i have written

$${yes}\:{sir}\:{i}\:{know}\:{the}\:{answer}\:{this}\:{way}\:{but} \\ $$$${why}\:{it}\:{can}\:{not}\:{be}\:{solved}\:{the}\:{way}\:{i}\:{have}\:{written} \\ $$

Commented by mr W last updated on 20/May/19

cos^2  x=1−sin^2  x  ⇒π cos^2  x=π−π sin^2  x  ⇒sin (π cos^2  x)=sin (π−π sin^2  x)

$$\mathrm{cos}^{\mathrm{2}} \:{x}=\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:{x} \\ $$$$\Rightarrow\pi\:\mathrm{cos}^{\mathrm{2}} \:{x}=\pi−\pi\:\mathrm{sin}^{\mathrm{2}} \:{x} \\ $$$$\Rightarrow\mathrm{sin}\:\left(\pi\:\mathrm{cos}^{\mathrm{2}} \:{x}\right)=\mathrm{sin}\:\left(\pi−\pi\:\mathrm{sin}^{\mathrm{2}} \:{x}\right) \\ $$

Commented by Prithwish sen last updated on 21/May/19

Yes sir you are right. Please forgive .

$$\mathrm{Yes}\:\mathrm{sir}\:\mathrm{you}\:\mathrm{are}\:\mathrm{right}.\:\mathrm{Please}\:\mathrm{forgive}\:. \\ $$

Commented by mr W last updated on 22/May/19

no problem sir!

$${no}\:{problem}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com