All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 604 by 123456 last updated on 09/Feb/15
∫+10(∫+1−11−x4y31−x2ydx)dy
Answered by prakash jain last updated on 15/Feb/15
1−x4y31−x2y=x2y2−x4y3−x2y2+y+1−y1−x2y=x2y2(1−x2y)+y(1−x2y)+(1−y)1−x2y=x2y2+y+1−y1−x2yIntegratewrtxy2x33+xy+1−yytanh−1(xy)puttinglimits=2y23+2y+21−yytanh−1(y)I1∫012y23dy=[2y39]01=29I2∫012ydy=[y2]01=1I3∫0121−yytanh−1(y)dyy=u2⇒dy=2udu∫0121−u2utanh−1u2udu=4∫01(1−u2)tanh−1udu=4[ln2−13ln2−16]=83ln2−23FinalAnswer29+1+83ln2−23=83ln2+2+9−69=83ln2+59
Terms of Service
Privacy Policy
Contact: info@tinkutara.com