All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 60424 by Mr X pcx last updated on 20/May/19
letz∈Cand∣z∣<1find f(x)=∫01ln(1+zx)dx.
Commented bymaxmathsup by imad last updated on 26/May/19
wehavef(z)=∫01ln(1+zx)dx⇒f′(z)=∫01x1+zxdx =1z∫011+zx−11+zxdx=1z−1z∫01dx1+zx =1z−1z∫01(∑n=0∞(−1)nznxn)dx=1z−1z∑n=0∞(−1)nzn∫01xndx =1z−1z∑n=0∞(−1)nn+1zn=1z−1z{1+∑n=1∞(−1)nn+1zn} =−∑n=1∞(−1)nn+1zn−1⇒f(z)=−∫(∑n=1∞(−1)nn+1zn−1)dz+c =−∑n=1∞(−1)nn(n+1)zn+cwehavef(0)=0=c⇒ f(z)=−∑n=1∞(−1)n{1n−1n+1}zn=−∑n=1∞(−1)nnzn+∑n=1∞(−1)nn+1zn (−1)nnzn=∑n=1∞(−z)nn=−ln(1+z) ∑n=1∞(−1)nn+1zn=1z∑n=1∞(−1)nn+1zn+1=1z∑n=2∞(−1)n−1nzn =1z{∑n=1∞(−1)n−1nzn−z}=1z{ln(1+z)−z}=ln(1+z)z−1⇒ f(z)=ln(1+z)+ln(1+z)z−1⇒f(z)=z+1zln(1+z)−1.
theQisfindf(z)=∫01ln(1+zx)dx.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com