All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 60426 by cesar.marval.larez@gmail.com last updated on 20/May/19
thefunctionisconsideredf(x,y)=exy+xy+sen((2x+3y)π)Calcule:∂f∂x,∂f∂y,∂2f∂x2,∂2f∂x∂y.fx(0,1),fy(2,−1),fxx(0,1),fxy(2,−1)
Commented by kaivan.ahmadi last updated on 21/May/19
∂f∂x=yexy+1y+2πcos((2x+3y)π)∂f∂y=xexy−xy2+3πcos(2x+3y)π)∂2f∂x2=∂∂x(∂f∂x)=y2exy−4π2sin(2x+3y)π)∂2f∂x∂y=∂∂x(∂f∂y)=xyexy−1y2−6π2sin(2x+3y)π)fx=∂f∂x,...fx(0,1)=e0+1+2πcos3π=2−2πfy(2,−1)=2e−2+3πcosπ=2e2−3πfxx(0,1)=e0−4π2sin3π=1fxy(2,−1)=−2e−2+1−6π2sinπ=−2e2+1
Commented by cesar.marval.larez@gmail.com last updated on 21/May/19
thankssirforthesolution
Terms of Service
Privacy Policy
Contact: info@tinkutara.com