Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 60426 by cesar.marval.larez@gmail.com last updated on 20/May/19

the function is considered   f(x,y)=e^(xy) +(x/y)+sen((2x+3y)π) Calcule:  (∂f/∂x),(∂f/∂y),(∂^2 f/∂x^2 ),(∂^2 f/(∂x∂y)).   f_x (0,1),f_y (2,−1), f_(xx) (0,1),f_(xy) (2,−1)

thefunctionisconsideredf(x,y)=exy+xy+sen((2x+3y)π)Calcule:fx,fy,2fx2,2fxy.fx(0,1),fy(2,1),fxx(0,1),fxy(2,1)

Commented by kaivan.ahmadi last updated on 21/May/19

(∂f/∂x)=ye^(xy) +(1/y)+2πcos((2x+3y)π)  (∂f/∂y)=xe^(xy) −(x/y^2 )+3πcos(2x+3y)π)  (∂^2 f/∂x^2 )=(∂/∂x)((∂f/∂x))=y^2 e^(xy) −4π^2 sin(2x+3y)π)  (∂^2 f/(∂x∂y))=(∂/∂x)((∂f/∂y))=xye^(xy) −(1/y^2 )−6π^2 sin(2x+3y)π)  f_x =(∂f/∂x)   ,...  f_x (0,1)=e^0 +1+2πcos3π=2−2π  f_y (2,−1)=2e^(−2) +3πcosπ=(2/e^2 )−3π  f_(xx) (0,1)=e^0 −4π^2 sin3π=1  f_(xy) (2,−1)=−2e^(−2) +1−6π^2 sinπ=((−2)/e^2 )+1

fx=yexy+1y+2πcos((2x+3y)π)fy=xexyxy2+3πcos(2x+3y)π)2fx2=x(fx)=y2exy4π2sin(2x+3y)π)2fxy=x(fy)=xyexy1y26π2sin(2x+3y)π)fx=fx,...fx(0,1)=e0+1+2πcos3π=22πfy(2,1)=2e2+3πcosπ=2e23πfxx(0,1)=e04π2sin3π=1fxy(2,1)=2e2+16π2sinπ=2e2+1

Commented by cesar.marval.larez@gmail.com last updated on 21/May/19

thanks sir for the solution

thankssirforthesolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com