Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60498 by abdo mathsup 649 cc last updated on 21/May/19

let f(t) =∫_0 ^3 (√(t +x +x^2 ))dx  with t ≥(1/4)  1) find a explicit form of f(t)  2) find also g(t) = ∫_0 ^3    (dx/(√(t+x +x^2 )))  3) calculate  ∫_0 ^3  (√(1+x+x^2 ))dx , ∫_0 ^3 (√(2 +x+x^2 ))dx  ∫_0 ^3    (dx/(√(2+x +x^2 )))  .

letf(t)=03t+x+x2dxwitht141)findaexplicitformoff(t)2)findalsog(t)=03dxt+x+x23)calculate031+x+x2dx,032+x+x2dx03dx2+x+x2.

Commented by maxmathsup by imad last updated on 22/May/19

let x^2  +x +t  →Δ=1−4t    but 4t≥1 ⇒4t−1≥0 ⇒1−4t ≤0  case 1    1−4t <0 ⇒x^2  +x +t =x^2  +2(x/2) +(1/(4 )) +t−(1/4) =(x+(1/2))^2  +((4t−1)/4)  we do the changement (x+(1/2)) =((√(4t−1))/2)u ⇒u=((2x+1)/(√(4t−1)))  f(t) =∫_(1/(√(4t−1))) ^(7/(√(4t−1)))   ((√(4t−1))/2)(√(1+u^2 ))((√(4t−1))/2) du =((4t−1)/4) ∫_(1/(√(4t−1))) ^(7/(√(4t−1)))   (√(1+u^2 ))du  =_(u =sh(α))    ((4t−1)/4) ∫_(argsh((1/(√(4t−1))))) ^(argsh((7/(√(4t−1)))))   ch(α)ch(α)dα  =((4t−1)/8) ∫_(ln((1/(√(4t−1))) +(√(1+(1/(4t−1)))))) ^(ln((7/(√(4t−1))) +(√(1+((49)/(4t−1))))))    (1+ch(2t))dt  =((4t−1)/8){ln((7/(√(4t−1)))+(√((4t+48)/(4t−1))))−ln((1/(√(4t−1)))+((2(√t))/(√(4t−1))))}  +((4t−1)/(16))[ sh(2t)]_(ln((1/((√(4t))−1)) +(√((4t)/(4t−1))))) ^(ln((7/((√(4t))−1)) +(√((4t+48)/(4t−1)))))   =((4t−1)/8){  ln((7/(√(4t−1))) +(√((4t+48)/(4t−1))))−ln((1/(√(4t−1))) +(√((4t)/(4t−1))))}  ((4t−1)/(32))[ e^(2t) −e^(−2t) ]_(...) ^(...)   ⇒  f(t)=((4t−1)/8){ ln((7/(√(4t−1))) +(√((4t+48)/(4t−1)))) −ln((1/(√(4t−1))) +(√((4t)/(4g−1))))}  +((4t−1)/(32)){   ((7/(√(4t−1))) +(√((4t+48)/(4t−1))))^2 −(1/(((7/(√(4t−1)))+(√((4t +48)/(4t−1))))^2 ))  −((1/(√(4t−1))) +(√((4t)/(4t−1))))^2  +(1/(((1/(√(4t−1)))+(√((4t)/(4t−1))))^2 ))}

letx2+x+tΔ=14tbut4t14t1014t0case114t<0x2+x+t=x2+2x2+14+t14=(x+12)2+4t14wedothechangement(x+12)=4t12uu=2x+14t1f(t)=14t174t14t121+u24t12du=4t1414t174t11+u2du=u=sh(α)4t14argsh(14t1)argsh(74t1)ch(α)ch(α)dα=4t18ln(14t1+1+14t1)ln(74t1+1+494t1)(1+ch(2t))dt=4t18{ln(74t1+4t+484t1)ln(14t1+2t4t1)}+4t116[sh(2t)]ln(14t1+4t4t1)ln(74t1+4t+484t1)=4t18{ln(74t1+4t+484t1)ln(14t1+4t4t1)}4t132[e2te2t]......f(t)=4t18{ln(74t1+4t+484t1)ln(14t1+4t4g1)}+4t132{(74t1+4t+484t1)21(74t1+4t+484t1)2(14t1+4t4t1)2+1(14t1+4t4t1)2}

Commented by maxmathsup by imad last updated on 22/May/19

case 2   t=(1/4) ⇒f(t)=∫_0 ^3 (√(x^2  +x+(1/4)))dx =∫_0 ^3 (√((x+(1/2))^2 ))dx  =∫_0 ^3 (x+(1/2))dx =[(x^2 /2) +(1/2)x]_0 ^3  =(9/2) +(3/2) =6  2) we have f^′ (t) =∫_0 ^3    (dx/(2(√(t+x+x^2 )))) =(1/2)g(t) ⇒g(x) =2f^′ (t) rest to calculatef^′ (t)

case2t=14f(t)=03x2+x+14dx=03(x+12)2dx=03(x+12)dx=[x22+12x]03=92+32=62)wehavef(t)=03dx2t+x+x2=12g(t)g(x)=2f(t)resttocalculatef(t)

Commented by maxmathsup by imad last updated on 22/May/19

3) ∫_0 ^3  (√(1+x+x^2 ))dx =f(1) =(3/8){ln((7/(√3)) +((√(52))/(√3)))−ln((1/(√3)) +(2/(√3)))}  +(3/(32)){ ((7/(√3)) +((√(52))/(√3)))^2  −(1/(((7/(√3))+((√(52))/(√3)))^2 )) −((1/(√3)) +(2/(√3)))^2  +(1/(((1/(√3)) +(2/(√3)))^2 ))} .  ∫_0 ^3 (√(2+x+x^2 ))dx =f(2)=....

3)031+x+x2dx=f(1)=38{ln(73+523)ln(13+23)}+332{(73+523)21(73+523)2(13+23)2+1(13+23)2}.032+x+x2dx=f(2)=....

Commented by maxmathsup by imad last updated on 22/May/19

let calculate I =∫_0 ^3    (dx/(√(x^2  +x +2)))  we have x^2  +x+2 =x^2  +x+(1/4) +2−(1/4)  =(x+(1/2))^2  +(7/4)   let use the changement x+(1/2)=((√7)/2) tanθ ⇒2x+1 =(√7)tanθ  I =∫_(arctan((1/(√7)))) ^(arctan((√7)))       (1/((√((7/4)(1+tan^2 θ)))))((√7)/2) dθ = ∫_(arctan((1/(√7)))) ^(arctan((√7)))    (dθ/(√(1+tan^2 θ)))  =∫_(arctan((1/((√7) )))) ^(arctan((√7)))  cosθ dθ =[sinθ]_(arctan((1/(√7)))) ^(arctan((√7)))  = sin(arctan((√7)))−sin(arctan((1/(√7))))  sin(arctanx) =(x/(√(1+x^2 )))  ⇒sin(arctan((√7))) =((√7)/(√8)) =((√7)/(2(√2)))  sin(arctan((1/(√7)))) =(1/((√7)(√(1+(1/7))))) =(1/((√7)((√8)/(√7)))) =(1/(2(√2))) ⇒  I =(((√7)−1)/(2(√2))) .

letcalculateI=03dxx2+x+2wehavex2+x+2=x2+x+14+214=(x+12)2+74letusethechangementx+12=72tanθ2x+1=7tanθI=arctan(17)arctan(7)174(1+tan2θ)72dθ=arctan(17)arctan(7)dθ1+tan2θ=arctan(17)arctan(7)cosθdθ=[sinθ]arctan(17)arctan(7)=sin(arctan(7))sin(arctan(17))sin(arctanx)=x1+x2sin(arctan(7))=78=722sin(arctan(17))=171+17=1787=122I=7122.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com