Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 60499 by abdo mathsup 649 cc last updated on 21/May/19

find the value of Σ_(n=1) ^∞     (((−1)^n )/(n^3 (n+1)^4 ))

findthevalueofn=1(1)nn3(n+1)4

Commented by maxmathsup by imad last updated on 30/May/19

let decompose F(x) =(1/(x^3 (x+1)^4 ))  we have   F(x) =Σ_(i=1) ^3  (a_i /x^i ) +Σ_(i=1) ^4  (b_i /((x+1)^i ))  let determine D_2 (0) for  f(x) =(x+1)^(−4)   we have f(x)=f(0) +((f^′ (0))/(1!)) x +((f^((2)) (0))/(2!)) x^2  +(x^3 /(3!))ξ(x)  f(0) =1  ,f^′ (x) =−4(x+1)^(−5)  ⇒f^′ (0) =−4 ,f^((2)) (x)=20 (x+1)^(−6) ⇒  f^((2)) (0) =20 ⇒f(x)=1−4x +10x^2  +x^3  ξ(x) ⇒  ((f(x))/x^3 ) =(1/x^3 ) −(4/x^2 ) +((10)/x) +ξ(x) ⇒a_1 =10 , a_2 =−4 , a_3 =−1 also we have  F(x) =_(x+1=t)    (1/((t−1)^3 t^4 ))  let find  D_3 (0)  for g(t) =(t−1)^(−3)   g(t) =g(0) +((g^′ (0))/(1!)) t +((g^((2)) (0))/(2!)) t^2  +((g^((3)) (0))/(3!))t^3  +(t^4 /(4!))ξ(t)  g(0) =−1 , g^′ (t) =−3(t−1)^(−4)  ⇒g^′ (0) =−3  g^((2)) (t) =12(t−1)^(−5) ⇒g^((2)) (0) =−12  , g^((3)) (t) =−60(t−1)^(−6)  ⇒  g^((3)) (0) =−60 ⇒  g(t) =−1 −3t −6t^2  −10 t^3  +(t^4 /(4!))ξ(t) ⇒  ((g(t))/t^4 ) =−(1/t^4 ) −(3/t^3 ) −(6/t^2 ) −((10)/t) +(1/(4!))ξ(t)  =−(1/((x+1)^4 )) −(3/((x+1)^3 )) −(6/((x+1)^2 )) −((10)/((x+1))) +(1/(4!))ξ(x+1) ⇒  b_1 =−10 , b_2 =−6 , b_3 =−3 , b_4 =−1 and   F(x) =((10)/x) −(4/x^2 ) −(1/x^3 ) −((10)/((x+1))) −(6/((x+1)^2 )) −(3/((x+1)^3 )) −(1/((x+1)^4 )) ⇒  Σ_(n=1) ^∞  (((−1)^n )/(n^3 (n+1)^4 )) =Σ_(n=1) ^∞ (−1)^n F(n)  =10 Σ_(n=1) ^∞  (((−1)^n )/n) −4 Σ_(n=1) ^∞  (((−1)^n )/n^2 ) −10 Σ_(n=1) ^∞  (((−1)^n )/(n+1)) −6Σ_(n=1) ^∞ (((−1)^n )/((n+1)^2 ))  −3 Σ_(n=1) ^∞  (((−1)^n )/((n+1)^3 )) −Σ_(n=1) ^∞  (((−1)^n )/n^4 )

letdecomposeF(x)=1x3(x+1)4wehaveF(x)=i=13aixi+i=14bi(x+1)iletdetermineD2(0)forf(x)=(x+1)4wehavef(x)=f(0)+f(0)1!x+f(2)(0)2!x2+x33!ξ(x)f(0)=1,f(x)=4(x+1)5f(0)=4,f(2)(x)=20(x+1)6f(2)(0)=20f(x)=14x+10x2+x3ξ(x)f(x)x3=1x34x2+10x+ξ(x)a1=10,a2=4,a3=1alsowehaveF(x)=x+1=t1(t1)3t4letfindD3(0)forg(t)=(t1)3g(t)=g(0)+g(0)1!t+g(2)(0)2!t2+g(3)(0)3!t3+t44!ξ(t)g(0)=1,g(t)=3(t1)4g(0)=3g(2)(t)=12(t1)5g(2)(0)=12,g(3)(t)=60(t1)6g(3)(0)=60g(t)=13t6t210t3+t44!ξ(t)g(t)t4=1t43t36t210t+14!ξ(t)=1(x+1)43(x+1)36(x+1)210(x+1)+14!ξ(x+1)b1=10,b2=6,b3=3,b4=1andF(x)=10x4x21x310(x+1)6(x+1)23(x+1)31(x+1)4n=1(1)nn3(n+1)4=n=1(1)nF(n)=10n=1(1)nn4n=1(1)nn210n=1(1)nn+16n=1(1)n(n+1)23n=1(1)n(n+1)3n=1(1)nn4

Commented by maxmathsup by imad last updated on 30/May/19

Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2)  Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(1/4)Σ_(n=1) ^∞  (1/n^2 ) −Σ_(n=0) ^∞  (1/((2n+1)^2 ))  Σ_(n=1) ^∞  (1/n^2 ) =(1/4) Σ_(n=1) ^∞ (1/n^2 ) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒Σ_(n=0) ^∞ (1/((2n+1)^2 )) =(3/4)ξ(2)  =(3/4) (π^2 /6) =(π^2 /8) ⇒Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(π^2 /(24)) −(π^2 /8) =((−2π^2 )/(24)) =−(π^2 /(12))  Σ_(n=1) ^∞   (((−1)^n )/(n+1)) =Σ_(n=2) ^∞   (((−1)^(n−1) )/n) =−Σ_(n=2) ^∞  (((−1)^n )/n)  =−{Σ_(n=1) ^∞  (((−1)^n )/n) +1) =−(−ln(2))−1 =ln(2)−1  Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 )) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n^2 ) =−Σ_(n=2) ^∞  (((−1)^n )/n^2 )  =−{ Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +1) =−(−(π^2 /(12)))−1 =(π^2 /(12)) −1  Σ_(n=1) ^∞   (((−1)^n )/((n+1)^3 )) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n^3 ) =−Σ_(n=2) ^∞  (((−1)^n )/n^3 )  for that let  calculate δ(x) =Σ_(n=1) ^∞  (((−1)^n )/n^x ) interms of  ξ(x) =Σ_(n=1) ^∞  (1/n^x )      (x>1)  we have   δ(x) =Σ_(n=1) ^∞   (1/(2^x n^x )) − Σ_(n=0) ^∞  (1/((2n+1)^x ))   ξ(x) =Σ_(n=1) ^∞  (1/n^x ) =(1/2^x ) ξ(x) +Σ_(n=0) ^∞  (1/((2n+1)^x )) ⇒  Σ_(n=0) ^∞   (1/((2n+1)^x )) =(1−2^(−x) )ξ(x) ⇒  δ(x) =2^(−x) ξ(x)−(1−2^(−x) )ξ(x) =(2^(1−x) −1)ξ(x)  Σ_(n=1) ^∞  (((−1)^n )/n^3 ) =(2^(−2) −1)ξ(3)=((1/4)−1)ξ(3) =−(3/4)ξ(3)  Σ_(n=1) ^∞  (((−1)^n )/n^4 ) =(2^(−3) −1)ξ(4) =((1/8) −1)ξ(4) =−(7/8)ξ(4)  so the value of S is determined...

n=1(1)nn=ln(2)n=1(1)nn2=14n=11n2n=01(2n+1)2n=11n2=14n=11n2+n=01(2n+1)2n=01(2n+1)2=34ξ(2)=34π26=π28n=1(1)nn2=π224π28=2π224=π212n=1(1)nn+1=n=2(1)n1n=n=2(1)nn={n=1(1)nn+1)=(ln(2))1=ln(2)1n=1(1)n(n+1)2=n=2(1)n1n2=n=2(1)nn2={n=1(1)nn2+1)=(π212)1=π2121n=1(1)n(n+1)3=n=2(1)n1n3=n=2(1)nn3forthatletcalculateδ(x)=n=1(1)nnxintermsofξ(x)=n=11nx(x>1)wehaveδ(x)=n=112xnxn=01(2n+1)xξ(x)=n=11nx=12xξ(x)+n=01(2n+1)xn=01(2n+1)x=(12x)ξ(x)δ(x)=2xξ(x)(12x)ξ(x)=(21x1)ξ(x)n=1(1)nn3=(221)ξ(3)=(141)ξ(3)=34ξ(3)n=1(1)nn4=(231)ξ(4)=(181)ξ(4)=78ξ(4)sothevalueofSisdetermined...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com