Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 60500 by prof Abdo imad last updated on 21/May/19

let A = (((1       1)),((−2   3)) )  1) find A^(−1)   2) calculate A^n   3) determine e^A    and e^(−2A)  .

letA=(1123)1)findA12)calculateAn3)determineeAande2A.

Commented by maxmathsup by imad last updated on 22/May/19

2) we have P_c (A) =det(A−xI)= determinant (((1−x            1)),((−2          3−x)))=(1−x)(3−x) +2=3−x−3x+x^2  +2  =x^2 −4x+5     P_c (A)=0 ⇒x^2 −4x +5 =0→Δ^′ =4−5 =−1 =i^2  ⇒  x_1 =2+i    and x_2 =2−i  v(x_1 )=Ker(A−x_1 I) ={u /(A−x_1 )u=0}  let u  ((x),(y) )  (A−x_1 ) ((x),(y) ) =0 ⇒ (((−1−i          1)),((−2            1−i)) ) ((x),(y) )= ((0),(0) ) ⇒ {_(−2+(1−i)y =0) ^((−1−i)x+y =o)   Δ_s = determinant (((−1−i          1)),((−2             1−i)))=−(1+i)(1−i)+2 =−(2) +2 =0 ⇒  y=(1+i)x ⇒(x,y) =(x,(1+i)x) =xe_1    with  e_1  ((1),((1+i)) )  v(x_2 ) = Ker (A−x_2 I) ={u/(A−x_2 I)u=0}  let u ((x),(y) )  (A−x_2 I)u =0 ⇒ (((−1+i         1)),((−2            1+i)) ) ((x),(y) )= ((0),(0) )  ⇒{_(−2x +(1+i)y =0) ^((−1+i)x +y =0)    ⇒  Δ_s = determinant (((−1+i          1)),((−2            1+i)))=−(1−i)(1+i)+2 =0 ⇒y=(1−i)x ⇒  (x,y) =(x,(1−i)x) =x(1,1−i) ⇒e_2  ((1),((1−i )) ) ⇒M_p = (((1             1)),((1+i       1−i)) )=P  and  D = (((2+i          0)),((0            2−i)) )  we have A =P DP^(−1)   ⇒ A^n  =PD^n P^(−1)     P^(−1)  =((t(com(P)))/(det P))                 det P =1−i−(1+i) =1−i−1−i =−2i  com(P) =(−1)^(i+j) A_(ij)    (((α_(11)            α_(12) )),((α_2 1            α_(22) )) )  α_(11) =1−i     ,    α_(21) =−(1)        ,   α_(12) =−(1+i)     ,  α_(22) =1 ⇒  com(P) = (((1−i         −1−i )),((−1               1)) ) ⇒t(com(P)) =  (((1−i               −1)),((−1−i               1)) )  ⇒  P^(−1)  =−(1/(2i)) (((1−i            −1)),((−1−i            1)) ) =   (((((−1+i)/(2i))         (1/(2i)))),((((1+i)/(2i))                   ((−1)/(2i)))) )  = (((((−i−1)/(−2))            (i/(−2)))),((((i−1)/(−2))                 ((−i)/(−2)))) ) = (((((1+i)/2)             ((−i)/2))),((((1−i)/2)               (i/2))) )  A^n  =(1/2)  (((1               1)),((1+i        1−i)) ) ((((2+i)^n             0)),((0              (2−i)^n )) ) (((1+i       −i)),((1−i         i)) )  rest to finish  the calculus....

2)wehavePc(A)=det(AxI)=|1x123x|=(1x)(3x)+2=3x3x+x2+2=x24x+5Pc(A)=0x24x+5=0Δ=45=1=i2x1=2+iandx2=2iv(x1)=Ker(Ax1I)={u/(Ax1)u=0}letu(xy)(Ax1)(xy)=0(1i121i)(xy)=(00){2+(1i)y=0(1i)x+y=oΔs=|1i121i|=(1+i)(1i)+2=(2)+2=0y=(1+i)x(x,y)=(x,(1+i)x)=xe1withe1(11+i)v(x2)=Ker(Ax2I)={u/(Ax2I)u=0}letu(xy)(Ax2I)u=0(1+i121+i)(xy)=(00){2x+(1+i)y=0(1+i)x+y=0Δs=|1+i121+i|=(1i)(1+i)+2=0y=(1i)x(x,y)=(x,(1i)x)=x(1,1i)e2(11i)Mp=(111+i1i)=PandD=(2+i002i)wehaveA=PDP1An=PDnP1P1=t(com(P))detPdetP=1i(1+i)=1i1i=2icom(P)=(1)i+jAij(α11α12α21α22)α11=1i,α21=(1),α12=(1+i),α22=1com(P)=(1i1i11)t(com(P))=(1i11i1)P1=12i(1i11i1)=(1+i2i12i1+i2i12i)=(i12i2i12i2)=(1+i2i21i2i2)An=12(111+i1i)((2+i)n00(2i)n)(1+ii1ii)resttofinishthecalculus....

Commented by maxmathsup by imad last updated on 22/May/19

1)  we have P_c (X) = x^2 −4x +5     cayley hamilton theorem give  P_c (A) =0 ⇒A^2 −4A +5I =0  ⇒A^2  =4A −5I ⇒A =4I −5 A^(−1)  ⇒  5A^(−1)  =−A +4I   =− (((1         1)),((−2     3)) ) + (((4         0)),((0         4)) )  =  (((3             −1)),((2                  1)) )  ⇒ A^(−1)  =  ((((3/5)           ((−1)/5))),(((2/5)                (1/5))) )     but first wd must verify  that  detA≠0 !

1)wehavePc(X)=x24x+5cayleyhamiltontheoremgivePc(A)=0A24A+5I=0A2=4A5IA=4I5A15A1=A+4I=(1123)+(4004)=(3121)A1=(35152515)butfirstwdmustverifythatdetA0!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com