All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 60500 by prof Abdo imad last updated on 21/May/19
letA=(11−23)1)findA−12)calculateAn3)determineeAande−2A.
Commented by maxmathsup by imad last updated on 22/May/19
2)wehavePc(A)=det(A−xI)=|1−x1−23−x|=(1−x)(3−x)+2=3−x−3x+x2+2=x2−4x+5Pc(A)=0⇒x2−4x+5=0→Δ′=4−5=−1=i2⇒x1=2+iandx2=2−iv(x1)=Ker(A−x1I)={u/(A−x1)u=0}letu(xy)(A−x1)(xy)=0⇒(−1−i1−21−i)(xy)=(00)⇒{−2+(1−i)y=0(−1−i)x+y=oΔs=|−1−i1−21−i|=−(1+i)(1−i)+2=−(2)+2=0⇒y=(1+i)x⇒(x,y)=(x,(1+i)x)=xe1withe1(11+i)v(x2)=Ker(A−x2I)={u/(A−x2I)u=0}letu(xy)(A−x2I)u=0⇒(−1+i1−21+i)(xy)=(00)⇒{−2x+(1+i)y=0(−1+i)x+y=0⇒Δs=|−1+i1−21+i|=−(1−i)(1+i)+2=0⇒y=(1−i)x⇒(x,y)=(x,(1−i)x)=x(1,1−i)⇒e2(11−i)⇒Mp=(111+i1−i)=PandD=(2+i002−i)wehaveA=PDP−1⇒An=PDnP−1P−1=t(com(P))detPdetP=1−i−(1+i)=1−i−1−i=−2icom(P)=(−1)i+jAij(α11α12α21α22)α11=1−i,α21=−(1),α12=−(1+i),α22=1⇒com(P)=(1−i−1−i−11)⇒t(com(P))=(1−i−1−1−i1)⇒P−1=−12i(1−i−1−1−i1)=(−1+i2i12i1+i2i−12i)=(−i−1−2i−2i−1−2−i−2)=(1+i2−i21−i2i2)An=12(111+i1−i)((2+i)n00(2−i)n)(1+i−i1−ii)resttofinishthecalculus....
1)wehavePc(X)=x2−4x+5cayleyhamiltontheoremgivePc(A)=0⇒A2−4A+5I=0⇒A2=4A−5I⇒A=4I−5A−1⇒5A−1=−A+4I=−(11−23)+(4004)=(3−121)⇒A−1=(35−152515)butfirstwdmustverifythatdetA≠0!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com