Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 60501 by prof Abdo imad last updated on 21/May/19

let A = ((( 1          1)),((1            1)) )  1)calculate A^n   2) determine e^A    and e^(−A)  .

letA=(1111)1)calculateAn2)determineeAandeA.

Commented by maxmathsup by imad last updated on 21/May/19

we P_c (A) = determinant (((1−x           1)),((1              1−x)))=(1−x)^2 −1 =x^2 −2x +1−1 =x^2 −2x  cayley hamilton theorem give P_c (A)=0 ⇒A^2 −2A =0 ⇒A^2  =2A ⇒  A^3  =2A^2  =2^2  A ⇒ A^n  =2^(n−1)  A ⇒ A^n  = (((2^(n−1)         2^(n−1) )),((2^(n−1)          2^(n−1) )) )      n≥1  2)  we have  e^A  =Σ_(n=0) ^∞  (A^n /(n!)) =I +Σ_(n=1) ^∞ (1/(n!)) (((2^(n−1)        2^(n−1) )),((2^(n−1)         2^(n−1) )) )  =I   +   (((Σ_(n=1) ^∞   (2^(n−1) /(n!))                Σ_(n=1) ^∞   (2^(n−1) /(n!)))),((Σ_(n=1) ^∞   (2^(n−1) /(n!))                  Σ_(n=1) ^∞   (2^(n−1) /(n!)))) )  Σ_(n=1) ^∞   (2^(n−1) /(n!)) =(1/2) Σ_(n=1) ^∞   (2^n /(n!)) =(1/2){ Σ_(n=0) ^∞  (2^n /(n!)) −1} =(1/2){e^2 −1}⇒  e^A  =  (((1            0)),((0             1)) )  +   (((((e^2 −1)/2)                    ((e^2 −1)/2))),((((e^2 −1)/2)                     ((e^2 −1)/2))) )  e^A  = (((((1+e^2 )/2)                  ((e^2 −1)/2))),((((e^2 −1)/2)                   ((1+e^2 )/2))) )  also we calculate e^(−A)     by folowing   the same steps   and use  e^(−A)  =Σ_(n=0) ^∞  (((−1)^n  A^n )/(n!))

wePc(A)=|1x111x|=(1x)21=x22x+11=x22xcayleyhamiltontheoremgivePc(A)=0A22A=0A2=2AA3=2A2=22AAn=2n1AAn=(2n12n12n12n1)n12)wehaveeA=n=0Ann!=I+n=11n!(2n12n12n12n1)=I+(n=12n1n!n=12n1n!n=12n1n!n=12n1n!)n=12n1n!=12n=12nn!=12{n=02nn!1}=12{e21}eA=(1001)+(e212e212e212e212)eA=(1+e22e212e2121+e22)alsowecalculateeAbyfolowingthesamestepsanduseeA=n=0(1)nAnn!

Answered by Prithwish sen last updated on 21/May/19

Is,  A^n = (((2^(n−1)   2^(n−1) )),((2^(n−1)    2^(n−1) )) )

Is,An=(2n12n12n12n1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com