All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 60501 by prof Abdo imad last updated on 21/May/19
letA=(1111)1)calculateAn2)determineeAande−A.
Commented by maxmathsup by imad last updated on 21/May/19
wePc(A)=|1−x111−x|=(1−x)2−1=x2−2x+1−1=x2−2xcayleyhamiltontheoremgivePc(A)=0⇒A2−2A=0⇒A2=2A⇒A3=2A2=22A⇒An=2n−1A⇒An=(2n−12n−12n−12n−1)n⩾12)wehaveeA=∑n=0∞Ann!=I+∑n=1∞1n!(2n−12n−12n−12n−1)=I+(∑n=1∞2n−1n!∑n=1∞2n−1n!∑n=1∞2n−1n!∑n=1∞2n−1n!)∑n=1∞2n−1n!=12∑n=1∞2nn!=12{∑n=0∞2nn!−1}=12{e2−1}⇒eA=(1001)+(e2−12e2−12e2−12e2−12)eA=(1+e22e2−12e2−121+e22)alsowecalculatee−Abyfolowingthesamestepsandusee−A=∑n=0∞(−1)nAnn!
Answered by Prithwish sen last updated on 21/May/19
Is,An=(2n−12n−12n−12n−1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com