Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 60502 by prof Abdo imad last updated on 21/May/19

let f(x) =arctan(2x) ln (1−x^2 )  1) calculate f^′ (x)  2)  determine f^((n)) (x) and f^((n)) (0)  3) developp  f at integr serie .

letf(x)=arctan(2x)ln(1x2)1)calculatef(x)2)determinef(n)(x)andf(n)(0)3)developpfatintegrserie.

Commented by maxmathsup by imad last updated on 31/May/19

1) we have f(x)=arctan(2x)ln(1−x^2 ) ⇒  f^′ (x) =(2/(1+4x^2 ))ln(1−x^2 ) +arctan(2x)((−2x)/(1−x^2 ))  =((2ln(1−x^2 ))/(1+4x^2 )) −((2x arctan(2x))/(1−x^2 ))  2) leibniz formulae give f^((n)) (x) =Σ_(k=0) ^n  C_n ^k  (arctan(2x))^((k)) (ln(1−x^2 ))^((n−k))   =arctan(x)(ln(1−x^2 ))^((n))  +Σ_(k=1) ^n  C_n ^k (arctan(2x))^((k)) {ln(1−x^2 )}^((n−k))   let w(x) =arctan(2x) ⇒w^′ (x) =(2/(1+4x^2 )) ⇒  w^((k)) (x) =2 ((1/(4x^2  +1)))^((k−1))  but  (1/(4x^2  +1)) =(1/(4(x^2  +(1/4)))) =(1/(4(x−(i/2))(x+(i/2))))  =(1/(4i)){(1/(x−(i/2))) −(1/(x+(i/2)))} ⇒w^((k)) (x) =(1/(2i)){ ((1/(x−(i/2))))^((k−1)) −((1/(x+(i/2))))^((k−1)) }  =(1/(2i)){   (((−1)^(k−1) (k−1)!)/((x−(i/2))^k )) −(((−1)^(k−1) (k−1)!)/((x+(i/2))^k ))}  =(((−1)^(k−1) (k−1)!)/(2i)){(((x+(i/2))^k −(x−(i/2))^k )/((x^2  +(1/4))^k ))}  =(((−1)^(k−1) (k−1)!)/((x^2  +(1/(4 )))^k )) Im( (x+(i/2))^k )  (x+(i/2))^k  =Σ_(p=0) ^k   C_k ^p ((i/2))^p  x^(k−p)   =Σ_(p=2q) (....)+Σ_(p=2q+1)   =Σ_(q=0) ^([(k/2)])      C_k ^(2q)   (((−1)^q )/2^(2q) ) x^(k−2q)   +Σ_(q=0) ^([((k−1)/2)])  C_k ^(2q+1)  ((i(−1)^q )/2^(2q+1) ) x^(k−2q−1)  ⇒  Im{(x+(i/2))^k } =Σ_(q=0) ^([((k−1)/2)])  C_k ^(2q+1) (((−1)^q )/2^(2q+1) ) x^(k−2q−1)  ⇒  w^((k)) (x) =(((−1)^(k−1) (k−1)!)/((x^2  +(1/4))^k )){ Σ_(q=0) ^([((k−1)/2)])  C_k ^(2q+1)  (((−1)^q )/2^(2q+1) ) x^(k−2q−1) }

1)wehavef(x)=arctan(2x)ln(1x2)f(x)=21+4x2ln(1x2)+arctan(2x)2x1x2=2ln(1x2)1+4x22xarctan(2x)1x22)leibnizformulaegivef(n)(x)=k=0nCnk(arctan(2x))(k)(ln(1x2))(nk)=arctan(x)(ln(1x2))(n)+k=1nCnk(arctan(2x))(k){ln(1x2)}(nk)letw(x)=arctan(2x)w(x)=21+4x2w(k)(x)=2(14x2+1)(k1)but14x2+1=14(x2+14)=14(xi2)(x+i2)=14i{1xi21x+i2}w(k)(x)=12i{(1xi2)(k1)(1x+i2)(k1)}=12i{(1)k1(k1)!(xi2)k(1)k1(k1)!(x+i2)k}=(1)k1(k1)!2i{(x+i2)k(xi2)k(x2+14)k}=(1)k1(k1)!(x2+14)kIm((x+i2)k)(x+i2)k=p=0kCkp(i2)pxkp=p=2q(....)+p=2q+1=q=0[k2]Ck2q(1)q22qxk2q+q=0[k12]Ck2q+1i(1)q22q+1xk2q1Im{(x+i2)k}=q=0[k12]Ck2q+1(1)q22q+1xk2q1w(k)(x)=(1)k1(k1)!(x2+14)k{q=0[k12]Ck2q+1(1)q22q+1xk2q1}

Commented by maxmathsup by imad last updated on 31/May/19

let v(x) =ln(1−x^2 )   let determine v^((n)) (x)  we have v^′ (x) =((−2x)/(1−x^2 )) =((1/(1+x)) −(1/(1−x))) ⇒  v^((n)) (x) =((1/(x+1)))^((n−1)) +((1/(x−1)))^((n−1))  =(((−1)^(n−1) (n−1)!)/((x+1)^n )) +(((−1)^(n−1) (n−1)!)/((x−1)^n ))  =(((−1)^(n−1) (n−1)!)/((x^2 −1)^n )){ (x+1)^n  +(x−1)^n }  but  (x+1)^n  +(x−1)^n  =Σ_(k=0) ^n  C_n ^k 1^k  x^(n−k)   +Σ_(k=0) ^n  C_n ^k (−1)^k  x^(n−k)   =Σ_(k=0) ^n   C_n ^k (1+(−1)^k )x^(n−k)   =Σ_(p=0) ^([(n/2)])  C_n ^(2p)  2 x^(n−2p)   =2 Σ_(p=0) ^([(n/2)])   C_n ^(2p)  x^(n−2p)  ⇒  v^((n)) (x) =((2(−1)^(n−1) (n−1)!)/((x^2 −1)^n )) Σ_(p=0) ^([(n/2)])  C_n ^(2p)  x^(n−2p)  ⇒  v^((n−k))   =((2(−1)^(n−k−1) (n−k−1)!)/((x^2 −1)^(n−k) )) Σ_(p=0) ^([((n−k)/2)])   C_(n−k) ^(2p)  x^(n−k−2p)   ⇒f^((n)) (x)=arctan(2x)w^((n)) (x) +Σ_(k=1) ^n  C_n ^k  w^((k)) (x) v^((n−k)) (x)

letv(x)=ln(1x2)letdeterminev(n)(x)wehavev(x)=2x1x2=(11+x11x)v(n)(x)=(1x+1)(n1)+(1x1)(n1)=(1)n1(n1)!(x+1)n+(1)n1(n1)!(x1)n=(1)n1(n1)!(x21)n{(x+1)n+(x1)n}but(x+1)n+(x1)n=k=0nCnk1kxnk+k=0nCnk(1)kxnk=k=0nCnk(1+(1)k)xnk=p=0[n2]Cn2p2xn2p=2p=0[n2]Cn2pxn2pv(n)(x)=2(1)n1(n1)!(x21)np=0[n2]Cn2pxn2pv(nk)=2(1)nk1(nk1)!(x21)nkp=0[nk2]Cnk2pxnk2pf(n)(x)=arctan(2x)w(n)(x)+k=1nCnkw(k)(x)v(nk)(x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com