Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 60510 by aliesam last updated on 21/May/19

Commented by maxmathsup by imad last updated on 21/May/19

let A =∫_0 ^∞     ((cos(xt))/(ch(t))) dt ⇒ A =∫_0 ^∞    ((cos(xt))/((e^t  +e^(−t) )/2)) dt  =2 ∫_0 ^∞   ((cos(xt))/(e^t  +e^(−t) ))dt =2 ∫_0 ^∞    ((e^(−t)  cos(xt))/(1+e^(−2t) ))dt  =2 ∫_0 ^∞     e^(−t) cos(xt)(Σ_(n=0) ^∞  (−1)^n  e^(−2nt) )dt  =2 Σ_(n=0) ^∞ (−1)^n  ∫_0 ^∞   e^(−(2n+1)t)  cos(xt)dt =2Σ_(n=0) ^∞  (−1)^n  w_n   w_n =Re ( ∫_0 ^∞   e^(−(2n+1)t)  e^(ixt) dt) =Re(∫_0 ^∞   e^((ix−2n+1))t) dt) but  ∫_0 ^∞   e^((ix−(2n+1))t) dt =[(1/(ix−(2n+1))) e^((ix−(2n+1))t) ]_(t=0) ^(t→+∞)   =−(1/(ix−(2n+1))) =(1/((2n+1)−ix)) =((2n+1+ix)/((2n+1)^2 +x^2 )) ⇒Re(...)=((2n+1)/((2n+1)^2  +x^2 )) ⇒  A =2 Σ_(n=0) ^∞   (−1)^n  ((2n+1)/((2n+1)^2  +x^2 )) .

$${let}\:{A}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left({xt}\right)}{{ch}\left({t}\right)}\:{dt}\:\Rightarrow\:{A}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({xt}\right)}{\frac{{e}^{{t}} \:+{e}^{−{t}} }{\mathrm{2}}}\:{dt} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({xt}\right)}{{e}^{{t}} \:+{e}^{−{t}} }{dt}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{t}} \:{cos}\left({xt}\right)}{\mathrm{1}+{e}^{−\mathrm{2}{t}} }{dt} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:{e}^{−{t}} {cos}\left({xt}\right)\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{e}^{−\mathrm{2}{nt}} \right){dt} \\ $$$$=\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right){t}} \:{cos}\left({xt}\right){dt}\:=\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{w}_{{n}} \\ $$$${w}_{{n}} ={Re}\:\left(\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right){t}} \:{e}^{{ixt}} {dt}\right)\:={Re}\left(\int_{\mathrm{0}} ^{\infty} \:\:{e}^{\left.\left({ix}−\mathrm{2}{n}+\mathrm{1}\right)\right){t}} {dt}\right)\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{\left({ix}−\left(\mathrm{2}{n}+\mathrm{1}\right)\right){t}} {dt}\:=\left[\frac{\mathrm{1}}{{ix}−\left(\mathrm{2}{n}+\mathrm{1}\right)}\:{e}^{\left({ix}−\left(\mathrm{2}{n}+\mathrm{1}\right)\right){t}} \right]_{{t}=\mathrm{0}} ^{{t}\rightarrow+\infty} \\ $$$$=−\frac{\mathrm{1}}{{ix}−\left(\mathrm{2}{n}+\mathrm{1}\right)}\:=\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)−{ix}}\:=\frac{\mathrm{2}{n}+\mathrm{1}+{ix}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} }\:\Rightarrow{Re}\left(...\right)=\frac{\mathrm{2}{n}+\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} \:+{x}^{\mathrm{2}} }\:\Rightarrow \\ $$$${A}\:=\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left(−\mathrm{1}\right)^{{n}} \:\frac{\mathrm{2}{n}+\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} \:+{x}^{\mathrm{2}} }\:. \\ $$

Commented by aliesam last updated on 21/May/19

thank you sir

$${thank}\:{you}\:{sir}\: \\ $$$$ \\ $$

Commented by maxmathsup by imad last updated on 22/May/19

you are welcome sir

$${you}\:{are}\:{welcome}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com