Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60534 by aliesam last updated on 21/May/19

Commented by maxmathsup by imad last updated on 22/May/19

we have ∫_(−∞) ^(+∞)    (dx/(1+e^x^2  )) =2 ∫_0 ^(+∞)   (e^(−x^2 ) /(1+e^(−x^2 ) ))dx  =2 ∫_0 ^∞   e^(−x^2 ) (Σ_(n=0) ^∞  (−1)^n  e^(−nx^2 ) )dx=2 Σ_(=0) ^(∞ ) (−1)^n   ∫_0 ^∞    e^(−(n+1)x^2 ) dx  =_((√(n+1))x =u)     2 Σ_(n=0) ^∞ (−1)^n  ∫_0 ^∞    e^(−u^2 )    (du/(√(n+1))) =2 ((√π)/2)  Σ_(n=0) ^∞   (((−1)^n )/(√(n+1)))  =(√π)Σ_(n=0) ^∞   (((−1)^n )/(√(n+1)))     we have    Σ_(n=0) ^∞    (((−1)^n )/(√(n+1))) =Σ_(n=1) ^∞   (((−1)^(n−1) )/(√n))  =−Σ_(n=1) ^∞   (1/(√(2n)))   +Σ_(n=0) ^∞   (1/(√(2n+1))) =−(1/(√2))ξ((1/2))+Σ_(n=0) ^∞   (1/(√(2n+1)))  Σ_(n=1) ^∞   (1/(√n)) =Σ_(n=1) ^∞  (1/(√(2n))) +Σ_(n=0) ^∞   (1/(√(2n+1)))  ⇒Σ_(n=0) ^∞  (1/(√(2n+1))) =ξ((1/2))−(1/(√2))ξ((1/2))  =(1−(1/(√2)))ξ((1/2)) ⇒ Σ_(n=0) ^∞   (((−1)^n )/(√(n+1))) =−(1/(√2))ξ((1/2)) +(1−(1/(√2)))ξ((1/2))  =(1−(√2))ξ((1/2)) ⇒ ∫_(−∞) ^(+∞)    (dx/(1+e^x^2  ))  =(√π)(1−(√2))ξ((1/2))  the equality is proved .

wehave+dx1+ex2=20+ex21+ex2dx=20ex2(n=0(1)nenx2)dx=2=0(1)n0e(n+1)x2dx=n+1x=u2n=0(1)n0eu2dun+1=2π2n=0(1)nn+1=πn=0(1)nn+1wehaven=0(1)nn+1=n=1(1)n1n=n=112n+n=012n+1=12ξ(12)+n=012n+1n=11n=n=112n+n=012n+1n=012n+1=ξ(12)12ξ(12)=(112)ξ(12)n=0(1)nn+1=12ξ(12)+(112)ξ(12)=(12)ξ(12)+dx1+ex2=π(12)ξ(12)theequalityisproved.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com