All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 60534 by aliesam last updated on 21/May/19
Commented by maxmathsup by imad last updated on 22/May/19
wehave∫−∞+∞dx1+ex2=2∫0+∞e−x21+e−x2dx=2∫0∞e−x2(∑n=0∞(−1)ne−nx2)dx=2∑=0∞(−1)n∫0∞e−(n+1)x2dx=n+1x=u2∑n=0∞(−1)n∫0∞e−u2dun+1=2π2∑n=0∞(−1)nn+1=π∑n=0∞(−1)nn+1wehave∑n=0∞(−1)nn+1=∑n=1∞(−1)n−1n=−∑n=1∞12n+∑n=0∞12n+1=−12ξ(12)+∑n=0∞12n+1∑n=1∞1n=∑n=1∞12n+∑n=0∞12n+1⇒∑n=0∞12n+1=ξ(12)−12ξ(12)=(1−12)ξ(12)⇒∑n=0∞(−1)nn+1=−12ξ(12)+(1−12)ξ(12)=(1−2)ξ(12)⇒∫−∞+∞dx1+ex2=π(1−2)ξ(12)theequalityisproved.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com