Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 60536 by hovea cw last updated on 21/May/19

cosx=sin3x  find x with solution    pllllllz

cosx=sin3xfindxwithsolutionpllllllz

Answered by mr W last updated on 21/May/19

cos x=sin ((π/2)−x)=sin 3x  ⇒3x=(π/2)−x+2nπ  ⇒x=((nπ)/2)+(π/8), nεZ  or  ⇒3x=(2n+1)π−((π/2)−x)  ⇒x=nπ+(π/4), nεZ

cosx=sin(π2x)=sin3x3x=π2x+2nπx=nπ2+π8,nϵZor3x=(2n+1)π(π2x)x=nπ+π4,nϵZ

Commented by hovea cw last updated on 21/May/19

ok sir thanks

oksirthanks

Answered by MJS last updated on 21/May/19

cos x =sin 3x  x=arctan t  (1/(√(t^2 +1)))=((t(3−t^2 ))/(√((t^2 +1)^3 )))  t^2 +1=t(3−t^2 )  t^3 +t^2 −3t+1=0  (t−1)(t^2 +2t−1)=0  t_1 =−1−(√2); t_2 =−1+(√2); t_3 =1  x_1 =arctan (−1−(√2))=−((3π)/8)±πn  x_2 =arctan (−1+(√2))=(π/8)±πn  x_3 =arctan 1 =(π/4)±πn  [n∈N]

cosx=sin3xx=arctant1t2+1=t(3t2)(t2+1)3t2+1=t(3t2)t3+t23t+1=0(t1)(t2+2t1)=0t1=12;t2=1+2;t3=1x1=arctan(12)=3π8±πnx2=arctan(1+2)=π8±πnx3=arctan1=π4±πn[nN]

Commented by hovea cw last updated on 21/May/19

how did u get arctant=x    skr

howdidugetarctant=xskr

Commented by MJS last updated on 21/May/19

I substituted it to get a solveable equation  in t

Isubstitutedittogetasolveableequationint

Commented by MJS last updated on 22/May/19

sin 3x =−sin x (1−4cos^2  x)  sin arctan t =(t/(√(t^2 +1)))  cos arctan t =(1/(√(t^2 +1)))  sin 3x =−(t/(√(t^2 +1)))(1−(4/(t^2 +1)))=((t(3−t^2 ))/(√((t^2 +1)^3 )))

sin3x=sinx(14cos2x)sinarctant=tt2+1cosarctant=1t2+1sin3x=tt2+1(14t2+1)=t(3t2)(t2+1)3

Answered by malwaan last updated on 22/May/19

cosx=cos((π/2)−3x)  x=±((π/2)−3x)+2nπ  ∴ x=(π/8)+((nπ)/2) ; n∈Z  or x=(π/4)−nπ=(π/4)+nπ ; n∈Z

cosx=cos(π23x)x=±(π23x)+2nπx=π8+nπ2;nZorx=π4nπ=π4+nπ;nZ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com