Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 6055 by 1771727373 last updated on 11/Jun/16

ln(x)+x=a  x=?

$${ln}\left({x}\right)+{x}={a} \\ $$$${x}=? \\ $$

Answered by Yozzii last updated on 11/Jun/16

lnx=a−x⇒x=e^(a−x) ⇒xe^x =e^a   ⇒W(xe^x )=W(e^a )  x=W(e^a )  W(z)=Σ_(n=1) ^∞ (((−1)^(n−1) n^(n−2) )/((n−1)!))z^n    (ref. Wolfram)  ∴W(e^a )=Σ_(n=1) ^∞ (((−1)^(n−1) n^(n−2) e^(na) )/((n−1)!))  x=Σ_(n=1) ^∞ (((−1)^(n−1) n^(n−2) e^(na) )/((n−1)!))

$${lnx}={a}−{x}\Rightarrow{x}={e}^{{a}−{x}} \Rightarrow{xe}^{{x}} ={e}^{{a}} \\ $$$$\Rightarrow{W}\left({xe}^{{x}} \right)={W}\left({e}^{{a}} \right) \\ $$$${x}={W}\left({e}^{{a}} \right) \\ $$$${W}\left({z}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {n}^{{n}−\mathrm{2}} }{\left({n}−\mathrm{1}\right)!}{z}^{{n}} \:\:\:\left({ref}.\:{Wolfram}\right) \\ $$$$\therefore{W}\left({e}^{{a}} \right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {n}^{{n}−\mathrm{2}} {e}^{{na}} }{\left({n}−\mathrm{1}\right)!} \\ $$$${x}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {n}^{{n}−\mathrm{2}} {e}^{{na}} }{\left({n}−\mathrm{1}\right)!} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com