Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60586 by Mr X pcx last updated on 22/May/19

find ∫_0 ^1   ((ln^2 (x))/((1−x^2 )^2 ))dx

find01ln2(x)(1x2)2dx

Commented by maxmathsup by imad last updated on 23/May/19

let  A =∫_0 ^1   ((ln^2 x)/((1−x^2 )^2 ))dx   we have for ∣x∣<1   Σ_(n=0) ^∞  x^n  =(1/(1−x))  and  Σ_(n=1) ^∞  nx^(n−1)  = (1/((1−x)^2 )) ⇒Σ_(n=1) ^∞  n x^(2n−2)  =(1/((1−x^2 )^2 )) ⇒  A =∫_0 ^1 (Σ_(n=1) ^∞  nx^(n−2) )ln^2 x dx =Σ_(n=1) ^∞ n ∫_0 ^1  x^(n−2) ln^2 x dx =Σ_(n=1) ^∞ nw_n   w_n =∫_0 ^1  x^(n−2) ln^2 x dx    by parts u^′  =x^(n−2)    and v =ln^2 x ⇒  w_n =[(1/(n−1))x^(n−1) ln^2 x]_0 ^1  −∫_0 ^1 (1/(n−1))x^(n−1)  ((2lnx)/x)dx  =−(2/(n−1)) ∫_0 ^1   x^(n−2)  ln(x)dx    by parts again  u^′  =x^(n−2)  and v =lnx ⇒  ∫_0 ^1  x^(n−2) ln(x)dx =[(1/(n−1))x^(n−1)  lnx]_0 ^1  −∫_0 ^1  (1/(n−1)) x^(n−1)  (dx/x)  =−(1/(n−1)) ∫_0 ^1 x^(n−2) dx =−(1/(n−1))[(1/(n−1)) x^(n−1) ]_0 ^1  =−(1/((n−1)^2 )) ⇒w_n =(2/((n−1)^3 ))  A =∫_0 ^1 (1+Σ_(n=2) ^∞  nx^(n−2) )ln^2 x dx =∫_0 ^1  ln^2 x dx +Σ_(n=2) ^∞  n ∫_0 ^1 x^(n−2) ln^2 xdx  =∫_0 ^1 ln^2 x dx +Σ_(n=2) ^∞ n(2/((n−1)^3 )) =∫_0 ^1  ln^2 x dx  + 2 Σ_(n=2) ^∞  (n/((n−1)^3 ))  Σ_(n=2) ^∞  (n/((n−1)^3 )) =Σ_(n=1) ^∞  ((n+1)/n^3 ) =Σ_(n=1) ^∞  (1/n^2 ) +Σ_(n=1) ^∞  (1/n^3 ) =(π^2 /6) +ξ(3)  ∫_0 ^1  ln^2 x dx =_(ln(x)=−t)        ∫_(+∞) ^0  t^2  (−e^(−t) )dt =∫_0 ^∞  t^2 e^(−t)  dt  =[−t^2 e^(−t) ]_0 ^(+∞)  −∫_0 ^(+∞)  2t (−e^(−t) )dt = 2 ∫_0 ^∞   t e^(−t)  dt  =2{ [−t e^(−t) ]_0 ^∞ −∫_0 ^∞   (−e^(−t) )dt} =2 ∫_0 ^∞  e^(−t)  dt =2[−e^(−t) ]_0 ^(+∞)  =2 ⇒   A = 2 +(π^2 /3) +2ξ(3)

letA=01ln2x(1x2)2dxwehaveforx∣<1n=0xn=11xandn=1nxn1=1(1x)2n=1nx2n2=1(1x2)2A=01(n=1nxn2)ln2xdx=n=1n01xn2ln2xdx=n=1nwnwn=01xn2ln2xdxbypartsu=xn2andv=ln2xwn=[1n1xn1ln2x]01011n1xn12lnxxdx=2n101xn2ln(x)dxbypartsagainu=xn2andv=lnx01xn2ln(x)dx=[1n1xn1lnx]01011n1xn1dxx=1n101xn2dx=1n1[1n1xn1]01=1(n1)2wn=2(n1)3A=01(1+n=2nxn2)ln2xdx=01ln2xdx+n=2n01xn2ln2xdx=01ln2xdx+n=2n2(n1)3=01ln2xdx+2n=2n(n1)3n=2n(n1)3=n=1n+1n3=n=11n2+n=11n3=π26+ξ(3)01ln2xdx=ln(x)=t+0t2(et)dt=0t2etdt=[t2et]0+0+2t(et)dt=20tetdt=2{[tet]00(et)dt}=20etdt=2[et]0+=2A=2+π23+2ξ(3)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com