Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60595 by maxmathsup by imad last updated on 22/May/19

let f(a) =∫_0 ^1   ((ln^2 (x))/((1−ax)^2 )) dx  with ∣a∣<1  1)  find a explicit form of f(a)  2) determine A(θ) =∫_0 ^1   ((ln^2 (x))/((1−(cosθ)x)^2 ))dx  with 0<θ<(π/2)

letf(a)=01ln2(x)(1ax)2dxwitha∣<1 1)findaexplicitformoff(a) 2)determineA(θ)=01ln2(x)(1(cosθ)x)2dxwith0<θ<π2

Commented bymaxmathsup by imad last updated on 23/May/19

1) we have for ∣x∣<1       Σ_(n=0) ^∞  x^n  =(1/(1−x))  and  Σ_(n=1) ^∞ nx^(n−1)  =(1/((1−x)^2 )) ⇒  (1/((1−ax)^2 )) =Σ_(n=1) ^∞  n(ax)^(n−1)  =Σ_(n=1) ^∞ n a^(n−1) x^(n−1)  ⇒  f(a) =∫_0 ^1 (Σ_(n=1) ^∞ na^(n−1) x^(n−1) )ln^2 (x)dx =Σ_(n=1) ^∞ na^(n−1) ∫_0 ^1  x^(n−1) ln^2 (x)dx  =Σ_(n=1) ^∞  na^(n−1) w_n      with  w_n =∫_0 ^1  x^(n−1) ln^2 (x)dx  by parts u^′ =x^(n−1)  and v=ln^2 x  w_n =[(1/n)x^n ln^2 x]_0 ^1  −∫_0 ^1 (1/n)x^n  ((2lnx)/x)dx =−(2/n) ∫_0 ^1  x^(n−1) ln(x)    =_(byparts)     −(2/n){  [(1/n)x^n lnx]_0 ^1  −∫_0 ^1 (1/n)x^n  (dx/x)}=−(2/n){−(1/n) ∫_0 ^1  x^(n−1) dx}  =(2/n^3 ) ⇒f(a) =Σ_(n=1) ^∞  ((2na^(n−1) )/n^3 ) =2 Σ_(n=1) ^∞   (a^(n−1) /n^2 ) ⇒af(a) =2Σ_(n=1) ^∞  (a^n /n^2 )  let try to find  s(x) =Σ_(n=1) ^∞  (x^n /n^2 )   if ∣x∣<1   ....

1)wehaveforx∣<1n=0xn=11xandn=1nxn1=1(1x)2 1(1ax)2=n=1n(ax)n1=n=1nan1xn1 f(a)=01(n=1nan1xn1)ln2(x)dx=n=1nan101xn1ln2(x)dx =n=1nan1wnwithwn=01xn1ln2(x)dxbypartsu=xn1andv=ln2x wn=[1nxnln2x]01011nxn2lnxxdx=2n01xn1ln(x) =byparts2n{[1nxnlnx]01011nxndxx}=2n{1n01xn1dx} =2n3f(a)=n=12nan1n3=2n=1an1n2af(a)=2n=1ann2 lettrytofinds(x)=n=1xnn2ifx∣<1....

Commented bymaxmathsup by imad last updated on 23/May/19

we have S^′ (x) =Σ_(n=1) ^∞  (x^(n−1) /n) ⇒x S^((1)) (x) =Σ_(n=1) ^∞  (x^n /n) ⇒  (x S^((1)) (x))^′  =Σ_(n=1) ^∞  x^(n−1)  =Σ_(n=0) ^∞  x^n  =(1/(1−x)) ⇒S^((1)) (x) +xS^((2)) (x) =(1/(1−x)) ⇒  S is solution of (de)      xy^(′′)  +y^′  =(1/(1−x))    let y^′  =z ⇒  xz^′  +z   =(1/(1−x))   (e)  (he) ⇒xz^′  +z =0 ⇒xz^′  =−z ⇒(z^′ /z) =−(1/x) ⇒ln∣z∣ =−ln∣x∣ +c ⇒  z =(k/(∣x∣))    let determine the solution on]0,+∞[ ⇒z =(k/x) ⇒ mvc method give  z^′  =(k^′ /x) −(k/x^2 )       (e) ⇒k^′  −(k/x) +(k/x) =(1/(1−x)) ⇒k^′  =(1/(1−x)) ⇒k(x) =−ln(1−x)+c_0   ⇒z(x) =−((ln(1−x))/x) +(c_0 /x)  y^′ =z ⇒y^′  =−((ln(1−x))/x) +(c_0 /x) ⇒ y(x) =−∫_0 ^x   ((ln(1−t))/t) dt +c_0 ln(x) +λ ⇒  S(x) = c_0 ln(x)−∫_0 ^x  ((ln(1−t))/t) dt    (  x>0)  S(e) =c_0  −∫_0 ^e    ((ln(1−t))/t) dt =Σ_(n=1) ^∞  (e^n /n^2 )  ⇒c_0 =Σ_(n=1) ^∞  (e^n /n^2 ) +∫_0 ^e  ((ln(1−t))/t) dt ⇒  S(x) =(Σ_(n=1) ^∞  (e^n /n^2 ) +∫_0 ^e  ((ln(1−t))/t) dt)ln(x)−∫_0 ^x  ((ln(1−t))/t) dt ....be continued...

wehaveS(x)=n=1xn1nxS(1)(x)=n=1xnn (xS(1)(x))=n=1xn1=n=0xn=11xS(1)(x)+xS(2)(x)=11x Sissolutionof(de)xy+y=11xlety=z xz+z=11x(e) (he)xz+z=0xz=zzz=1xlnz=lnx+c z=kxletdeterminethesolutionon]0,+[z=kxmvcmethodgive z=kxkx2(e)kkx+kx=11xk=11xk(x)=ln(1x)+c0 z(x)=ln(1x)x+c0x y=zy=ln(1x)x+c0xy(x)=0xln(1t)tdt+c0ln(x)+λ S(x)=c0ln(x)0xln(1t)tdt(x>0) S(e)=c00eln(1t)tdt=n=1enn2c0=n=1enn2+0eln(1t)tdt S(x)=(n=1enn2+0eln(1t)tdt)ln(x)0xln(1t)tdt....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com