All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 60595 by maxmathsup by imad last updated on 22/May/19
letf(a)=∫01ln2(x)(1−ax)2dxwith∣a∣<1 1)findaexplicitformoff(a) 2)determineA(θ)=∫01ln2(x)(1−(cosθ)x)2dxwith0<θ<π2
Commented bymaxmathsup by imad last updated on 23/May/19
1)wehavefor∣x∣<1∑n=0∞xn=11−xand∑n=1∞nxn−1=1(1−x)2⇒ 1(1−ax)2=∑n=1∞n(ax)n−1=∑n=1∞nan−1xn−1⇒ f(a)=∫01(∑n=1∞nan−1xn−1)ln2(x)dx=∑n=1∞nan−1∫01xn−1ln2(x)dx =∑n=1∞nan−1wnwithwn=∫01xn−1ln2(x)dxbypartsu′=xn−1andv=ln2x wn=[1nxnln2x]01−∫011nxn2lnxxdx=−2n∫01xn−1ln(x) =byparts−2n{[1nxnlnx]01−∫011nxndxx}=−2n{−1n∫01xn−1dx} =2n3⇒f(a)=∑n=1∞2nan−1n3=2∑n=1∞an−1n2⇒af(a)=2∑n=1∞ann2 lettrytofinds(x)=∑n=1∞xnn2if∣x∣<1....
wehaveS′(x)=∑n=1∞xn−1n⇒xS(1)(x)=∑n=1∞xnn⇒ (xS(1)(x))′=∑n=1∞xn−1=∑n=0∞xn=11−x⇒S(1)(x)+xS(2)(x)=11−x⇒ Sissolutionof(de)xy″+y′=11−xlety′=z⇒ xz′+z=11−x(e) (he)⇒xz′+z=0⇒xz′=−z⇒z′z=−1x⇒ln∣z∣=−ln∣x∣+c⇒ z=k∣x∣letdeterminethesolutionon]0,+∞[⇒z=kx⇒mvcmethodgive z′=k′x−kx2(e)⇒k′−kx+kx=11−x⇒k′=11−x⇒k(x)=−ln(1−x)+c0 ⇒z(x)=−ln(1−x)x+c0x y′=z⇒y′=−ln(1−x)x+c0x⇒y(x)=−∫0xln(1−t)tdt+c0ln(x)+λ⇒ S(x)=c0ln(x)−∫0xln(1−t)tdt(x>0) S(e)=c0−∫0eln(1−t)tdt=∑n=1∞enn2⇒c0=∑n=1∞enn2+∫0eln(1−t)tdt⇒ S(x)=(∑n=1∞enn2+∫0eln(1−t)tdt)ln(x)−∫0xln(1−t)tdt....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com