Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60621 by fjdjdcjv last updated on 22/May/19

if π is rational then there  exists a I_n =(v^(2n) /(n!))∫_0 ^π x^n (x−π)^n sin(x)dx  can someone give a easier way to expaned this

ifπisrationalthenthereexistsaIn=v2nn!π0xn(xπ)nsin(x)dxcansomeonegiveaeasierwaytoexpanedthis

Commented by MJS last updated on 23/May/19

I don′t understand. we can solve the integral  for any given n∈N even if π∉Q. and what is v?

Idontunderstand.wecansolvetheintegralforanygivennNevenifπQ.andwhatisv?

Commented by fjdjdcjv last updated on 23/May/19

π=(u/v)

π=uv

Commented by MJS last updated on 23/May/19

ok. still the integral exists, quite apart from  the nature of π  another question: sin x with which period,  2π or 2(u/v)?  is it (v^(2n) /(n!))∫_0 ^(u/v) x^n (x−(u/v))sin ((vπx)/u) dx?  or shall we calculate I_n  using the usual π  and then show that π∉Q?

ok.stilltheintegralexists,quiteapartfromthenatureofπanotherquestion:sinxwithwhichperiod,2πor2uv?isitv2nn!uv0xn(xuv)sinvπxudx?orshallwecalculateInusingtheusualπandthenshowthatπQ?

Commented by MJS last updated on 23/May/19

sorry this is quite confusing me

sorrythisisquiteconfusingme

Commented by MJS last updated on 23/May/19

I_1 =−4v^2   I_2 =2v^4 (−π^2 +12)  I_3 =24v^6 (π^2 −10)  I_4 =2v^8 (π^4 −180π^2 +1680)  I_5 =60v^(10) (−π^4 +112π^2 −1008)  ...  all calculated with the usual π  if π=(u/v)  I_1 =−4v^2   I_2 =−2(u^2 −12v^2 )v^2   I_3 =24(u^2 −10v^2 )v^4   I_4 =2(u^4 −180u^2 v^2 +1680v^4 )v^4   I_5 =−60(u^4 −112u^2 v^2 +1008v^4 )v^6   ...  but what do we know now?

I1=4v2I2=2v4(π2+12)I3=24v6(π210)I4=2v8(π4180π2+1680)I5=60v10(π4+112π21008)...allcalculatedwiththeusualπifπ=uvI1=4v2I2=2(u212v2)v2I3=24(u210v2)v4I4=2(u4180u2v2+1680v4)v4I5=60(u4112u2v2+1008v4)v6...butwhatdoweknownow?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com