Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60637 by rajesh4661kumar@gamil.com last updated on 23/May/19

Commented by maxmathsup by imad last updated on 23/May/19

∫    ((sinx)/(1−sinx)) dx =−∫((1−sinx −1)/(1−sinx))dx =−x +∫  (dx/(1−sinx))  ∫  (dx/(1−sinx)) =_(tan((x/2))=t)       ∫  (1/(1−((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) =2 ∫   (dt/(1+t^2 −2t)) =2 ∫  (dt/((t−1)^2 ))  =((−2)/(t−1)) +c =(2/(1−tan((x/2)))) +c ⇒  ∫  ((sinx)/(1−sinx))dx =−x +(2/(1−tan((x/2)))) +c .

sinx1sinxdx=1sinx11sinxdx=x+dx1sinxdx1sinx=tan(x2)=t112t1+t22dt1+t2=2dt1+t22t=2dt(t1)2=2t1+c=21tan(x2)+csinx1sinxdx=x+21tan(x2)+c.

Answered by tanmay last updated on 23/May/19

∫((sinx(1+sinx))/(cos^2 x))dx  ∫((sinx)/(cos^2 x))dx+∫((sin^2 x)/(cos^2 x))dx  ∫tanxsecxdx+∫(sec^2 x−1)dx  ∫tanxsecx+∫sec^2 xdx−∫dx  secx+tanx−x+c

sinx(1+sinx)cos2xdxsinxcos2xdx+sin2xcos2xdxtanxsecxdx+(sec2x1)dxtanxsecx+sec2xdxdxsecx+tanxx+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com