Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60680 by maxmathsup by imad last updated on 24/May/19

study the integral ∫_0 ^1  (x/(ln(1−x)))dx

$${study}\:{the}\:{integral}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}}{{ln}\left(\mathrm{1}−{x}\right)}{dx} \\ $$

Commented by maxmathsup by imad last updated on 29/May/19

let I =∫_0 ^1   (x/(ln(1−x)))dx  changement ln(1−x)=−t  give  1−x =e^(−t)   I = ∫_0 ^∞    ((1−e^(−t) )/(−t)) (e^(−t) dt) =−∫_0 ^∞   ((e^(−t) −e^(−2t) )/t)dt =∫_0 ^∞  ((e^(−2t) −e^(−t) )/t) dt  at v(0)   e^(−2t)  ∼1−2t    ,e^(−t)  ∼1−t  ⇒e^(−2t)  −e^(−t)  ∼−t ⇒  ((e^(−2t) −e^(−t) )/t) ∼−1     also lim_(→+∞)     t^2  ((e^(−2t)  −e^(−t) )/t)  =0 ⇒I converges

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{{ln}\left(\mathrm{1}−{x}\right)}{dx}\:\:{changement}\:{ln}\left(\mathrm{1}−{x}\right)=−{t}\:\:{give}\:\:\mathrm{1}−{x}\:={e}^{−{t}} \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}−{e}^{−{t}} }{−{t}}\:\left({e}^{−{t}} {dt}\right)\:=−\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} −{e}^{−\mathrm{2}{t}} }{{t}}{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−\mathrm{2}{t}} −{e}^{−{t}} }{{t}}\:{dt} \\ $$$${at}\:{v}\left(\mathrm{0}\right)\:\:\:{e}^{−\mathrm{2}{t}} \:\sim\mathrm{1}−\mathrm{2}{t}\:\:\:\:,{e}^{−{t}} \:\sim\mathrm{1}−{t}\:\:\Rightarrow{e}^{−\mathrm{2}{t}} \:−{e}^{−{t}} \:\sim−{t}\:\Rightarrow \\ $$$$\frac{{e}^{−\mathrm{2}{t}} −{e}^{−{t}} }{{t}}\:\sim−\mathrm{1}\:\:\:\:\:{also}\:{lim}_{\rightarrow+\infty} \:\:\:\:{t}^{\mathrm{2}} \:\frac{{e}^{−\mathrm{2}{t}} \:−{e}^{−{t}} }{{t}}\:\:=\mathrm{0}\:\Rightarrow{I}\:{converges} \\ $$

Commented by maxmathsup by imad last updated on 29/May/19

we have I =lim_(ξ→0)  I(ξ)  with I(ξ) =∫_ξ ^∞   ((e^(−2t) −e^(−t) )/t) dt  I(ξ) =∫_ξ ^(+∞)  (e^(−2t) /t) dt =_(2t =u)      ∫_(2ξ) ^(+∞)   (e^(−u) /(u/2)) (du/2) = ∫_(2ξ) ^(+∞)  (e^(−u) /u) du ⇒  I(ξ) =∫_(2ξ) ^(+∞)  (e^(−t) /t)dt −∫_ξ ^(+∞)   (e^(−t) /t) dt = ∫_(2ξ) ^ξ   (e^(−t) /t) dt =−∫_ξ ^(2ξ)   (e^(−t) /t) dt   ∃ c ∈]ξ,2ξ[  /  I(ξ) =−e^(−ξ)   ∫_ξ ^(2ξ)   (dt/t) =−e^(−ξ)  ln(((2ξ)/ξ)) ⇒lim_(ξ→0)  I(ξ) =−ln(2) ⇒  I =−ln(2).

$${we}\:{have}\:{I}\:={lim}_{\xi\rightarrow\mathrm{0}} \:{I}\left(\xi\right)\:\:{with}\:{I}\left(\xi\right)\:=\int_{\xi} ^{\infty} \:\:\frac{{e}^{−\mathrm{2}{t}} −{e}^{−{t}} }{{t}}\:{dt} \\ $$$${I}\left(\xi\right)\:=\int_{\xi} ^{+\infty} \:\frac{{e}^{−\mathrm{2}{t}} }{{t}}\:{dt}\:=_{\mathrm{2}{t}\:={u}} \:\:\:\:\:\int_{\mathrm{2}\xi} ^{+\infty} \:\:\frac{{e}^{−{u}} }{\frac{{u}}{\mathrm{2}}}\:\frac{{du}}{\mathrm{2}}\:=\:\int_{\mathrm{2}\xi} ^{+\infty} \:\frac{{e}^{−{u}} }{{u}}\:{du}\:\Rightarrow \\ $$$${I}\left(\xi\right)\:=\int_{\mathrm{2}\xi} ^{+\infty} \:\frac{{e}^{−{t}} }{{t}}{dt}\:−\int_{\xi} ^{+\infty} \:\:\frac{{e}^{−{t}} }{{t}}\:{dt}\:=\:\int_{\mathrm{2}\xi} ^{\xi} \:\:\frac{{e}^{−{t}} }{{t}}\:{dt}\:=−\int_{\xi} ^{\mathrm{2}\xi} \:\:\frac{{e}^{−{t}} }{{t}}\:{dt}\: \\ $$$$\left.\exists\:{c}\:\in\right]\xi,\mathrm{2}\xi\left[\:\:/\:\:{I}\left(\xi\right)\:=−{e}^{−\xi} \:\:\int_{\xi} ^{\mathrm{2}\xi} \:\:\frac{{dt}}{{t}}\:=−{e}^{−\xi} \:{ln}\left(\frac{\mathrm{2}\xi}{\xi}\right)\:\Rightarrow{lim}_{\xi\rightarrow\mathrm{0}} \:{I}\left(\xi\right)\:=−{ln}\left(\mathrm{2}\right)\:\Rightarrow\right. \\ $$$${I}\:=−{ln}\left(\mathrm{2}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com