Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 60701 by maxmathsup by imad last updated on 24/May/19

let f(x) =e^(−x^2 ) ln(2−x)   developp f at integr serie .

letf(x)=ex2ln(2x)developpfatintegrserie.

Commented by maxmathsup by imad last updated on 27/May/19

we have f(x) =e^(−x^2 ) ln(2(1−(x/2))) =ln(2) e^(−x^2 )  +e^(−x^2 ) ln(1−(x/2))  if ∣(x/2)∣<1 ⇒−2<x<2  we get  e^(−x^2 )  =Σ_(n=0) ^∞   (((−x^2 )^n )/(n!)) =Σ_(n=0) ^∞  (((−1)^n x^(2n) )/(n!))  ln(1+u) =Σ_(n=1) ^∞  (−1)^(n−1)  (u^n /n) ⇒ln(1−u) =−Σ_(n=1) ^∞ (u^n /n) ⇒  ln(1−(x/2)) =−Σ_(n=1) ^∞  (x^n /(n2^n ))  ⇒f(x)=ln(2)Σ_(n=0) ^∞  (((−1)^n  x^(2n) )/(n!))  −(Σ_(n=0) ^∞  (((−1)^n  x^(2n) )/(n!)))(Σ_(n=1) ^∞   (x^n /(n2^n )))   =ln(2)Σ_(n=0) ^∞   (((−1)^n x^(2n) )/(n!)) −Σ_(n=1) ^∞  (x^n /(n2^n )) +(Σ_(n=1) ^∞  (((−1)^n )/(n!)) x^(2n) )(Σ_(n=1) ^∞  (1/(n2^n ))x^n )  let a_n =(((−1)^n )/(n!)) x^(2n)    and b_n =(1/(n2^n ))x^n  ⇒  (Σ_(n=1) ^∞ (...))(Σ(...)) =(Σ_(n=1) ^∞ a_n ) (Σ_(n=1) ^∞ b_n ) =Σ_(n=1) ^∞  c_n   c_n =Σ_(i+j=n )   a_i b_j   =Σ_(i=1) ^n  a_i  b_(n−i)    =Σ_(i=1) ^n  (((−1)^i )/(i!)) x^(2i)     (1/((n−i)2^(n−i) )) x^(n−i)   =Σ_(i=1) ^n  (((−1)^i )/(i!(n−i)2^(n−i) )) x^(n+i)  ⇒  f(x) =ln(2)Σ_(n=0) ^∞   (((−1)^n x^(2n) )/(n!)) −Σ_(n=1) ^∞  (x^n /(n 2^n )) +Σ_(n=1) ^∞ (Σ_(i=1) ^n  (((−1)^i )/(i!(n−i)!2^(n−i) ))x^i )x^n   ....be continued....

wehavef(x)=ex2ln(2(1x2))=ln(2)ex2+ex2ln(1x2)ifx2∣<12<x<2wegetex2=n=0(x2)nn!=n=0(1)nx2nn!ln(1+u)=n=1(1)n1unnln(1u)=n=1unnln(1x2)=n=1xnn2nf(x)=ln(2)n=0(1)nx2nn!(n=0(1)nx2nn!)(n=1xnn2n)=ln(2)n=0(1)nx2nn!n=1xnn2n+(n=1(1)nn!x2n)(n=11n2nxn)letan=(1)nn!x2nandbn=1n2nxn(n=1(...))(Σ(...))=(n=1an)(n=1bn)=n=1cncn=i+j=naibj=i=1naibni=i=1n(1)ii!x2i1(ni)2nixni=i=1n(1)ii!(ni)2nixn+if(x)=ln(2)n=0(1)nx2nn!n=1xnn2n+n=1(i=1n(1)ii!(ni)!2nixi)xn....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com