Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 60706 by maxmathsup by imad last updated on 24/May/19

let f(x) =(√(1+x^2 ))  1) let U_n =f^((n)) (x)  prove that Σ_(k=0) ^n  C_n ^k  U_k U_(n+1−k) =0  for n≥2  2) developp f at integr serie .

$${let}\:{f}\left({x}\right)\:=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{let}\:{U}_{{n}} ={f}^{\left({n}\right)} \left({x}\right)\:\:{prove}\:{that}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{U}_{{k}} {U}_{{n}+\mathrm{1}−{k}} =\mathrm{0}\:\:{for}\:{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$

Commented by maxmathsup by imad last updated on 03/Jun/19

1) we have f(x)=(√(1+x^2 )) ⇒f^2 (x) =1+x^2  ⇒2f(x)f^′ (x)=2x ⇒  ∀n≥2    {f(x)f^′ (x)}^((n))  =0 ⇒Σ_(k=0) ^n    C_n ^k  (f(x))^((k)) (f^′ (x))^((n−k))  =0 ⇒  Σ_(k=0) ^n   C_n ^k  f^((k)) (x) f^((n−k+1)) (x) =0 ⇒Σ_(k=0) ^n C_n ^k  U_k  U_(n+1−k)  =0   for n≥2

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}\left({x}\right)=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\Rightarrow{f}^{\mathrm{2}} \left({x}\right)\:=\mathrm{1}+{x}^{\mathrm{2}} \:\Rightarrow\mathrm{2}{f}\left({x}\right){f}^{'} \left({x}\right)=\mathrm{2}{x}\:\Rightarrow \\ $$$$\forall{n}\geqslant\mathrm{2}\:\:\:\:\left\{{f}\left({x}\right){f}^{'} \left({x}\right)\right\}^{\left({n}\right)} \:=\mathrm{0}\:\Rightarrow\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\:{C}_{{n}} ^{{k}} \:\left({f}\left({x}\right)\right)^{\left({k}\right)} \left({f}^{'} \left({x}\right)\right)^{\left({n}−{k}\right)} \:=\mathrm{0}\:\Rightarrow \\ $$$$\overset{{n}} {\sum}_{{k}=\mathrm{0}} \:\:{C}_{{n}} ^{{k}} \:{f}^{\left({k}\right)} \left({x}\right)\:{f}^{\left({n}−{k}+\mathrm{1}\right)} \left({x}\right)\:=\mathrm{0}\:\Rightarrow\sum_{{k}=\mathrm{0}} ^{{n}} {C}_{{n}} ^{{k}} \:{U}_{{k}} \:{U}_{{n}+\mathrm{1}−{k}} \:=\mathrm{0}\:\:\:{for}\:{n}\geqslant\mathrm{2} \\ $$

Commented by maxmathsup by imad last updated on 03/Jun/19

(1+u)^(α )  =1 +(α/(1!)) u +((α(α−1))/(2!)) u^2  +....((α(α−1)...(α−n+1))/(n!)) u^n  +...⇒for α=(1/2)  and u =x^2  we get  f(x) =1 +((1/2)/(1!)) x^2  +(((1/2)((1/2)−1))/(2!)) x^4  +...(((1/2)((1/2)−1)..((1/2)−n+1))/(n!)) x^(2n)  +...  =1+(1/2)x^2  −(1/8) x^4  +(((1/2)(−(1/2))(((−3)/2))....(((3−2n)/2)))/(n!)) x^(2n)  +....

$$\left(\mathrm{1}+{u}\right)^{\alpha\:} \:=\mathrm{1}\:+\frac{\alpha}{\mathrm{1}!}\:{u}\:+\frac{\alpha\left(\alpha−\mathrm{1}\right)}{\mathrm{2}!}\:{u}^{\mathrm{2}} \:+....\frac{\alpha\left(\alpha−\mathrm{1}\right)...\left(\alpha−{n}+\mathrm{1}\right)}{{n}!}\:{u}^{{n}} \:+...\Rightarrow{for}\:\alpha=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${and}\:{u}\:={x}^{\mathrm{2}} \:{we}\:{get}\:\:{f}\left({x}\right)\:=\mathrm{1}\:+\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{1}!}\:{x}^{\mathrm{2}} \:+\frac{\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right)}{\mathrm{2}!}\:{x}^{\mathrm{4}} \:+...\frac{\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right)..\left(\frac{\mathrm{1}}{\mathrm{2}}−{n}+\mathrm{1}\right)}{{n}!}\:{x}^{\mathrm{2}{n}} \:+... \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \:−\frac{\mathrm{1}}{\mathrm{8}}\:{x}^{\mathrm{4}} \:+\frac{\frac{\mathrm{1}}{\mathrm{2}}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\frac{−\mathrm{3}}{\mathrm{2}}\right)....\left(\frac{\mathrm{3}−\mathrm{2}{n}}{\mathrm{2}}\right)}{{n}!}\:{x}^{\mathrm{2}{n}} \:+.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com