All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 60716 by peter frank last updated on 24/May/19
Commented by maxmathsup by imad last updated on 25/May/19
letA(x)=(xx+1)x⇒A(x)=(1−x+1x)x=exln(1−1x+1)butwehaveforu∈V(0)ln(1−u)∼−u⇒ln(1−1x+1)∼−1x+1forx∈V(+∞)⇒xln(1−1x+1)∼−xx+1→−1(x→+∞)⇒limx→+∞A(x)=e−1=1e★limx→+∞(xx+1)x=1e★.
Answered by Smail last updated on 24/May/19
(x1+x)x=(11+1/x)x=(1+1x)−x=e−xln(1+1/x)Lett=1/xe−xln(1+1/x)=e−ln(1+t)tln(1+t)∼0tSoe−ln(1+t)t∼0e−tt=1eThus,limex→∞−xln(1+1/x)=limx→∞(x1+x)x=1e
Commented by peter frank last updated on 24/May/19
thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com