Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 60734 by Tawa1 last updated on 25/May/19

Find the product of the real roots of the equation           (x + 2 + (√(x^2  + 4x + 3)))^5  −  32(x + 2 − (√(x^2  + 4x + 3)))^5   =  31

Findtheproductoftherealrootsoftheequation(x+2+x2+4x+3)532(x+2x2+4x+3)5=31

Commented by Prithwish sen last updated on 25/May/19

∵ (x+2+(√(x^2 +4x+3))) = (1/((x+2 −(√(x^2 +4x+3)))))  Now let   (x+2+(√(x^2 +4x+3))) = a  then the equation  a^5 −((32)/a^5 ) =31  ⇒(a^5 +1) −32(((a^5 +1)/a^5 )) =0  either              or,  a^5 =−1               ( (2/a))^5 =1  is it ok ?

(x+2+x2+4x+3)=1(x+2x2+4x+3)Nowlet(x+2+x2+4x+3)=athentheequationa532a5=31(a5+1)32(a5+1a5)=0eitheror,a5=1(2a)5=1isitok?

Commented by Tawa1 last updated on 25/May/19

God bless you sir

Godblessyousir

Commented by MJS last updated on 25/May/19

great!  my thinking is too complicated sometimes

great!mythinkingistoocomplicatedsometimes

Commented by Prithwish sen last updated on 25/May/19

thank you sir

thankyousir

Answered by MJS last updated on 25/May/19

(a+b)^5 −32(a−b)^5 =31  T_1 −32T_2 =31 ⇒ T_1 =31+32T_2   trying some easy numbers I found these:  (a+b)=−1∧(a−b)=−1  x+2±(√(x^2 +4x+3))=−1  (√(x^2 +4x+3))=±(x+3)  (√((x+3)(x+1)))=±(x+3)  (x+3)(x+1)=(x+3)^2   ⇒ x=−3 in both cases    (a+b)^5 =32∧(a−b)^5 =(1/(32))  x+2+(√(x^2 +4x+3))=((32))^(1/5)      x+2−(√(x^2 +4x+3))=(1/((32))^(1/5) )  (√(x^2 +4x+3))=−x      (√(x^2 +4x+3))=x+(3/2)  x^2 +4x+3=x^2             x^2 +4x+3=(x+(3/2))^2   x=−(3/4)                         x=−(3/4)    of course we don′t yet know if there are more  solutions

(a+b)532(ab)5=31T132T2=31T1=31+32T2tryingsomeeasynumbersIfoundthese:(a+b)=1(ab)=1x+2±x2+4x+3=1x2+4x+3=±(x+3)(x+3)(x+1)=±(x+3)(x+3)(x+1)=(x+3)2x=3inbothcases(a+b)5=32(ab)5=132x+2+x2+4x+3=325x+2x2+4x+3=1325x2+4x+3=xx2+4x+3=x+32x2+4x+3=x2x2+4x+3=(x+32)2x=34x=34ofcoursewedontyetknowiftherearemoresolutions

Commented by Tawa1 last updated on 25/May/19

God bless you sir

Godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com