Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60739 by Forkum Michael Choungong last updated on 25/May/19

evaluate    i.∫ (((x+1)/(x−1)))dx  ii.  ∫_0 ^π (2cosxsinx)dx    iii.  ∫_((π/(3 )) ) ^π (((sin2x)/(cos2x)))dx

$${evaluate}\:\: \\ $$$${i}.\int\:\left(\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right){dx} \\ $$$${ii}.\:\:\int_{\mathrm{0}} ^{\pi} \left(\mathrm{2}{cosxsinx}\right){dx}\:\: \\ $$$${iii}.\:\:\int_{\frac{\pi}{\mathrm{3}\:}\:} ^{\pi} \left(\frac{{sin}\mathrm{2}{x}}{{cos}\mathrm{2}{x}}\right){dx} \\ $$

Commented by malwaan last updated on 25/May/19

iii. WRONG  because ((3π)/4)∈[(π/3)  ; π]  ⇒2x=2×((3π)/4)=((3π)/2)  ⇒cos((3π)/2)=0  ⇒the integral is not converge

$${iii}.\:{WRONG} \\ $$$${because}\:\frac{\mathrm{3}\pi}{\mathrm{4}}\in\left[\frac{\pi}{\mathrm{3}}\:\:;\:\pi\right] \\ $$$$\Rightarrow\mathrm{2}{x}=\mathrm{2}×\frac{\mathrm{3}\pi}{\mathrm{4}}=\frac{\mathrm{3}\pi}{\mathrm{2}} \\ $$$$\Rightarrow{cos}\frac{\mathrm{3}\pi}{\mathrm{2}}=\mathrm{0} \\ $$$$\Rightarrow{the}\:{integral}\:{is}\:{not}\:{converge} \\ $$

Commented by maxmathsup by imad last updated on 25/May/19

3) let I =∫  ((sin(2x))/(cos(2x)))dx ⇒ I =_(2x=t)      (1/2)∫   ((sint)/(cost)) dt   =−(1/2)ln∣cost∣ +c=−(1/2)ln∣cos((x/2))∣+c ⇒ ∫_(π/3) ^ξ   ((sin(2x))/(cos(2x)))dx =  =[−(1/2)ln∣cos((x/2))∣]_(π/3) ^ξ  =(1/2)ln∣((√3)/2)∣−(1/2)ln∣cos((ξ/2))∣  lim_(ξ→π)   ln∣cos((ξ/2))∣ =∞ ⇒ this integral diverges ...!

$$\left.\mathrm{3}\right)\:{let}\:{I}\:=\int\:\:\frac{{sin}\left(\mathrm{2}{x}\right)}{{cos}\left(\mathrm{2}{x}\right)}{dx}\:\Rightarrow\:{I}\:=_{\mathrm{2}{x}={t}} \:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\:\:\frac{{sint}}{{cost}}\:{dt}\: \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{cost}\mid\:+{c}=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{cos}\left(\frac{{x}}{\mathrm{2}}\right)\mid+{c}\:\Rightarrow\:\int_{\frac{\pi}{\mathrm{3}}} ^{\xi} \:\:\frac{{sin}\left(\mathrm{2}{x}\right)}{{cos}\left(\mathrm{2}{x}\right)}{dx}\:= \\ $$$$=\left[−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{cos}\left(\frac{{x}}{\mathrm{2}}\right)\mid\right]_{\frac{\pi}{\mathrm{3}}} ^{\xi} \:=\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mid−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{cos}\left(\frac{\xi}{\mathrm{2}}\right)\mid \\ $$$${lim}_{\xi\rightarrow\pi} \:\:{ln}\mid{cos}\left(\frac{\xi}{\mathrm{2}}\right)\mid\:=\infty\:\Rightarrow\:{this}\:{integral}\:{diverges}\:...! \\ $$

Commented by Forkum Michael Choungong last updated on 25/May/19

okay thanks i didnt see that

$${okay}\:{thanks}\:{i}\:{didnt}\:{see}\:{that} \\ $$

Commented by Forkum Michael Choungong last updated on 25/May/19

okay thanks i didnt see that

$${okay}\:{thanks}\:{i}\:{didnt}\:{see}\:{that} \\ $$

Answered by kaivan.ahmadi last updated on 25/May/19

i.  ∫((x−1+2)/(x−1))dx=∫dx+∫(2/(x−1))=x+2ln(x−1)+C  ii.  ∫_0 ^π sin2xdx=((−1)/2)cos2x∣_0 ^π =((−1)/2)(cos2π−cos0)=0  iii.  u=cos2x⇒du=((−1)/2)sin2xdx  −2∫(du/u)=−2lnu=−2ln(cos2x)∣_(π/3) ^π =−2(ln(cos2π)−ln(cos(((2π)/3))))  −2(ln0−ln(((−1)/2))) that is not true, chek the question

$${i}. \\ $$$$\int\frac{{x}−\mathrm{1}+\mathrm{2}}{{x}−\mathrm{1}}{dx}=\int{dx}+\int\frac{\mathrm{2}}{{x}−\mathrm{1}}={x}+\mathrm{2}{ln}\left({x}−\mathrm{1}\right)+{C} \\ $$$${ii}. \\ $$$$\int_{\mathrm{0}} ^{\pi} {sin}\mathrm{2}{xdx}=\frac{−\mathrm{1}}{\mathrm{2}}{cos}\mathrm{2}{x}\mid_{\mathrm{0}} ^{\pi} =\frac{−\mathrm{1}}{\mathrm{2}}\left({cos}\mathrm{2}\pi−{cos}\mathrm{0}\right)=\mathrm{0} \\ $$$${iii}. \\ $$$${u}={cos}\mathrm{2}{x}\Rightarrow{du}=\frac{−\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}{xdx} \\ $$$$−\mathrm{2}\int\frac{{du}}{{u}}=−\mathrm{2}{lnu}=−\mathrm{2}{ln}\left({cos}\mathrm{2}{x}\right)\mid_{\frac{\pi}{\mathrm{3}}} ^{\pi} =−\mathrm{2}\left({ln}\left({cos}\mathrm{2}\pi\right)−{ln}\left({cos}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\right)\right) \\ $$$$−\mathrm{2}\left({ln}\mathrm{0}−{ln}\left(\frac{−\mathrm{1}}{\mathrm{2}}\right)\right)\:{that}\:{is}\:{not}\:{true},\:{chek}\:{the}\:{question} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com