Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60739 by Forkum Michael Choungong last updated on 25/May/19

evaluate    i.∫ (((x+1)/(x−1)))dx  ii.  ∫_0 ^π (2cosxsinx)dx    iii.  ∫_((π/(3 )) ) ^π (((sin2x)/(cos2x)))dx

evaluatei.(x+1x1)dxii.0π(2cosxsinx)dxiii.π3π(sin2xcos2x)dx

Commented by malwaan last updated on 25/May/19

iii. WRONG  because ((3π)/4)∈[(π/3)  ; π]  ⇒2x=2×((3π)/4)=((3π)/2)  ⇒cos((3π)/2)=0  ⇒the integral is not converge

iii.WRONGbecause3π4[π3;π]2x=2×3π4=3π2cos3π2=0theintegralisnotconverge

Commented by maxmathsup by imad last updated on 25/May/19

3) let I =∫  ((sin(2x))/(cos(2x)))dx ⇒ I =_(2x=t)      (1/2)∫   ((sint)/(cost)) dt   =−(1/2)ln∣cost∣ +c=−(1/2)ln∣cos((x/2))∣+c ⇒ ∫_(π/3) ^ξ   ((sin(2x))/(cos(2x)))dx =  =[−(1/2)ln∣cos((x/2))∣]_(π/3) ^ξ  =(1/2)ln∣((√3)/2)∣−(1/2)ln∣cos((ξ/2))∣  lim_(ξ→π)   ln∣cos((ξ/2))∣ =∞ ⇒ this integral diverges ...!

3)letI=sin(2x)cos(2x)dxI=2x=t12sintcostdt=12lncost+c=12lncos(x2)+cπ3ξsin(2x)cos(2x)dx==[12lncos(x2)]π3ξ=12ln3212lncos(ξ2)limξπlncos(ξ2)=thisintegraldiverges...!

Commented by Forkum Michael Choungong last updated on 25/May/19

okay thanks i didnt see that

okaythanksididntseethat

Commented by Forkum Michael Choungong last updated on 25/May/19

okay thanks i didnt see that

okaythanksididntseethat

Answered by kaivan.ahmadi last updated on 25/May/19

i.  ∫((x−1+2)/(x−1))dx=∫dx+∫(2/(x−1))=x+2ln(x−1)+C  ii.  ∫_0 ^π sin2xdx=((−1)/2)cos2x∣_0 ^π =((−1)/2)(cos2π−cos0)=0  iii.  u=cos2x⇒du=((−1)/2)sin2xdx  −2∫(du/u)=−2lnu=−2ln(cos2x)∣_(π/3) ^π =−2(ln(cos2π)−ln(cos(((2π)/3))))  −2(ln0−ln(((−1)/2))) that is not true, chek the question

i.x1+2x1dx=dx+2x1=x+2ln(x1)+Cii.0πsin2xdx=12cos2x0π=12(cos2πcos0)=0iii.u=cos2xdu=12sin2xdx2duu=2lnu=2ln(cos2x)π3π=2(ln(cos2π)ln(cos(2π3)))2(ln0ln(12))thatisnottrue,chekthequestion

Terms of Service

Privacy Policy

Contact: info@tinkutara.com