Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 60745 by Tawa1 last updated on 25/May/19

Commented by Prithwish sen last updated on 25/May/19

(([(n+1)!]^n )/((n!)^(n+1) )) =[(((n+1)!)/(n!))]^n .(1/(n!)) =(((n+1)^n )/(n!))  =(((n+1))/1).(((n+1))/2)............(((n+1))/n) >1  ∴ [(n+1)!]^n  >(n!)^(n+1)     i.e( 101!)^(100)  is the larger

$$\frac{\left[\left(\mathrm{n}+\mathrm{1}\right)!\right]^{\mathrm{n}} }{\left(\mathrm{n}!\right)^{\mathrm{n}+\mathrm{1}} }\:=\left[\frac{\left(\mathrm{n}+\mathrm{1}\right)!}{\mathrm{n}!}\right]^{\mathrm{n}} .\frac{\mathrm{1}}{\mathrm{n}!}\:=\frac{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}!} \\ $$$$=\frac{\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{1}}.\frac{\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}}............\frac{\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{n}}\:>\mathrm{1} \\ $$$$\therefore\:\left[\left(\mathrm{n}+\mathrm{1}\right)!\right]^{\mathrm{n}} \:>\left(\mathrm{n}!\right)^{\mathrm{n}+\mathrm{1}} \\ $$$$ \\ $$$$\mathrm{i}.\mathrm{e}\left(\:\mathrm{101}!\right)^{\mathrm{100}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{larger} \\ $$$$ \\ $$

Commented by Tawa1 last updated on 25/May/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by maxmathsup by imad last updated on 25/May/19

3) we have (2x−1)^(100)  =Σ_(k=0) ^(100)  C_(100) ^k  (2x)^k (−1)^(100−k)   =Σ_(k=0) ^(100)  C_(100) ^k  2^k (−1)^k  x^k  =Σ_(k=0) ^(100)  a_k  x^k   ⇒a_k = C_(100) ^k  (−2)^k  ⇒  Σ_(k=0) ^(100)   a_k =Σ_(k=0) ^(100)  C_(100) ^k (−2)^k  (1)^(100−k)  =(−2+1)^(100)  =1 .

$$\left.\mathrm{3}\right)\:{we}\:{have}\:\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{100}} \:=\sum_{{k}=\mathrm{0}} ^{\mathrm{100}} \:{C}_{\mathrm{100}} ^{{k}} \:\left(\mathrm{2}{x}\right)^{{k}} \left(−\mathrm{1}\right)^{\mathrm{100}−{k}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\mathrm{100}} \:{C}_{\mathrm{100}} ^{{k}} \:\mathrm{2}^{{k}} \left(−\mathrm{1}\right)^{{k}} \:{x}^{{k}} \:=\sum_{{k}=\mathrm{0}} ^{\mathrm{100}} \:{a}_{{k}} \:{x}^{{k}} \:\:\Rightarrow{a}_{{k}} =\:{C}_{\mathrm{100}} ^{{k}} \:\left(−\mathrm{2}\right)^{{k}} \:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{0}} ^{\mathrm{100}} \:\:{a}_{{k}} =\sum_{{k}=\mathrm{0}} ^{\mathrm{100}} \:{C}_{\mathrm{100}} ^{{k}} \left(−\mathrm{2}\right)^{{k}} \:\left(\mathrm{1}\right)^{\mathrm{100}−{k}} \:=\left(−\mathrm{2}+\mathrm{1}\right)^{\mathrm{100}} \:=\mathrm{1}\:. \\ $$

Commented by Tawa1 last updated on 25/May/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by maxmathsup by imad last updated on 25/May/19

you are welcome sir .

$${you}\:{are}\:{welcome}\:{sir}\:. \\ $$

Answered by tanmay last updated on 25/May/19

2)(2y−x)^k =(2y)^k −kc_1 (2y)^(k−1) (x)+kc_2 (2y)^(k−2) (x)^2 −kc_3 (2y)^(k−3) x^3 +...(−1)^k (x)^k   so sum of coefficients  =2^k −kc_1 (2)^(k−1) +kc_2 2^(k−2) −kc_3 2^(k−3) +..+(−1)^k   =(2×1−1)^k    [put x=1  and  y=1]  =1

$$\left.\mathrm{2}\right)\left(\mathrm{2}{y}−{x}\right)^{{k}} =\left(\mathrm{2}{y}\right)^{{k}} −{kc}_{\mathrm{1}} \left(\mathrm{2}{y}\right)^{{k}−\mathrm{1}} \left({x}\right)+{kc}_{\mathrm{2}} \left(\mathrm{2}{y}\right)^{{k}−\mathrm{2}} \left({x}\right)^{\mathrm{2}} −{kc}_{\mathrm{3}} \left(\mathrm{2}{y}\right)^{{k}−\mathrm{3}} {x}^{\mathrm{3}} +...\left(−\mathrm{1}\right)^{{k}} \left({x}\right)^{{k}} \\ $$$${so}\:{sum}\:{of}\:{coefficients} \\ $$$$=\mathrm{2}^{{k}} −{kc}_{\mathrm{1}} \left(\mathrm{2}\right)^{{k}−\mathrm{1}} +{kc}_{\mathrm{2}} \mathrm{2}^{{k}−\mathrm{2}} −{kc}_{\mathrm{3}} \mathrm{2}^{{k}−\mathrm{3}} +..+\left(−\mathrm{1}\right)^{{k}} \\ $$$$=\left(\mathrm{2}×\mathrm{1}−\mathrm{1}\right)^{{k}} \:\:\:\left[{put}\:{x}=\mathrm{1}\:\:{and}\:\:{y}=\mathrm{1}\right] \\ $$$$=\mathrm{1}\:\:\: \\ $$$$ \\ $$

Commented by Tawa1 last updated on 25/May/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by tanmay last updated on 25/May/19

3)(2x−1)^(100) =a_0 +a_1 x+...+a_(100) x^(100)   now put x=1  (1)^(100) =1=sum of coefficient

$$\left.\mathrm{3}\right)\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{100}} ={a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+...+{a}_{\mathrm{100}} {x}^{\mathrm{100}} \\ $$$${now}\:{put}\:{x}=\mathrm{1} \\ $$$$\left(\mathrm{1}\right)^{\mathrm{100}} =\mathrm{1}={sum}\:{of}\:{coefficient} \\ $$

Commented by Tawa1 last updated on 25/May/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by tanmay last updated on 25/May/19

3)  ii)(x^3 −x−1)^(99) =a_0 +a_1 x+a_2 x^2 +...+a_i x^(297)   put x=1   sum of coefficient=(1^3 −1−1)^(99) =−1

$$\left.\mathrm{3}\right) \\ $$$$\left.{ii}\right)\left({x}^{\mathrm{3}} −{x}−\mathrm{1}\right)^{\mathrm{99}} ={a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +...+{a}_{{i}} {x}^{\mathrm{297}} \\ $$$${put}\:{x}=\mathrm{1}\: \\ $$$${sum}\:{of}\:{coefficient}=\left(\mathrm{1}^{\mathrm{3}} −\mathrm{1}−\mathrm{1}\right)^{\mathrm{99}} =−\mathrm{1} \\ $$

Commented by Tawa1 last updated on 25/May/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by tanmay last updated on 25/May/19

4)  (2x+3y−z)^(20)   put y=1 z=2  (2x+1)^(20) =a_0 x^(20) +a_1 x^(19) +a_2 x^(18) +...+1  now put y=−1  z=−2  (2x−1)^(20) =a_0 x^(20) −a_1 x^(19) +a_2 x^(18) +...+1  (2x+1)^(20) −(2x−1)^(20)   =2[a_1 x^(19) +a_3 x^(17) +...]  put x=1 both side  so sum of coefficient containing odd power of  x is  =((3^(20) −1^(20) )/2)  =((3^(20) −1)/2)

$$\left.\mathrm{4}\right) \\ $$$$\left(\mathrm{2}{x}+\mathrm{3}{y}−{z}\right)^{\mathrm{20}} \\ $$$${put}\:{y}=\mathrm{1}\:{z}=\mathrm{2} \\ $$$$\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{20}} ={a}_{\mathrm{0}} {x}^{\mathrm{20}} +{a}_{\mathrm{1}} {x}^{\mathrm{19}} +{a}_{\mathrm{2}} {x}^{\mathrm{18}} +...+\mathrm{1} \\ $$$${now}\:{put}\:{y}=−\mathrm{1}\:\:{z}=−\mathrm{2} \\ $$$$\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{20}} ={a}_{\mathrm{0}} {x}^{\mathrm{20}} −{a}_{\mathrm{1}} {x}^{\mathrm{19}} +{a}_{\mathrm{2}} {x}^{\mathrm{18}} +...+\mathrm{1} \\ $$$$\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{20}} −\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{20}} \\ $$$$=\mathrm{2}\left[{a}_{\mathrm{1}} {x}^{\mathrm{19}} +{a}_{\mathrm{3}} {x}^{\mathrm{17}} +...\right] \\ $$$${put}\:{x}=\mathrm{1}\:{both}\:{side} \\ $$$${so}\:{sum}\:{of}\:{coefficient}\:{containing}\:{odd}\:{power}\:{of} \\ $$$${x}\:{is} \\ $$$$=\frac{\mathrm{3}^{\mathrm{20}} −\mathrm{1}^{\mathrm{20}} }{\mathrm{2}} \\ $$$$=\frac{\mathrm{3}^{\mathrm{20}} −\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Prithwish sen last updated on 25/May/19

excellent sir .

$$\mathrm{excellent}\:\mathrm{sir}\:. \\ $$

Commented by tanmay last updated on 25/May/19

thank you sir...

$${thank}\:{you}\:{sir}... \\ $$

Commented by Tawa1 last updated on 25/May/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by Tawa1 last updated on 25/May/19

I appreciate your effort sir

$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{effort}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com